ECTS - Electromembrane Processes

Electromembrane Processes (CEAC572) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Electromembrane Processes CEAC572 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Enver Güler
Course Assistants
Course Objectives The main objective of this course is to give scientific bases for electromembrane processes. In addition to fundamentals of the topic, design of electrochemical systems and equipment will be explained. Therefore, students will develop their problem-solving skills on the application of ion exchange membrane technology.
Course Learning Outcomes The students who succeeded in this course;
  • Explain the definition of ion exchange membranes and materials.
  • Define concept of the electrochemical and thermodynamic fundamentals.
  • Explain the preparation and characterization of ion exchange membranes.
  • Describe electromembrane processes.
  • Explain the use of ion exchange membranes in electrochemical synthesis.
  • Discuss energy conversion and storage using electromembrane processes.
Course Content Basic concepts and definitions in ion exchange membrane science, materials, characterization, electrochemical and thermodynamic fundamentals, energy conversion technologies, fuel cells, process and equipment design.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to electromembrane processes Chapter 1
2 Electrochemical and thermodynamic fundamentals Chapter 2
3 Synthesis and characterization of ion exchange membranes Chapter 3
4 Electrodialysis, Electrodeionization Chapter 4
5 Dialysis, Capacitive deionization Chapter 5
6 Electrochemical synthesis Other references
7 Midterm
8 Fuel cells Other references
9 Reverse electrodialysis Other references
10 Capacitive mixing Other resources
11 Process and equipment design I Chapter 5
12 Process and equipment design II Chapter 5
13 Seminars I Other references
14 Seminars II Other references
15 Seminars III Other references
16 Final Exam

Sources

Course Book 1. Strathmann, H., Ion-exchange membrane separation processes, Membrane Science and Technology Series, Elsevier, First edition, 2004.
Other Sources 2. Drioli, E., Giorno, L., Comprehensive Membrane Science and Engineering vol II, Elsevier, First edition, 2010
3. Drioli, E., Giorno, L., Membrane Operations, Wiley-VCH, Germany, 2009

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 20
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 4 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Possesses sufficient knowledge in mathematics, science, and chemistry engineering-specific subjects, and gains the ability to apply theoretical and practical knowledge in these areas to complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex chemical engineering problems; selects and applies appropriate analysis and modeling methods for these purposes.
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose.
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in chemical engineering applications; uses information technologies effectively.
5 Designs experiments, conducts experiments, collects data, analyzes results, and interprets them for the investigation of complex engineering problems or research topics specific to the chemical engineering discipline.
6 Gaining the ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Communicates effectively in both spoken and written Turkish and gains proficiency in at least one foreign language. Writes effective reports, understands written reports, and prepares design and production reports. Gains the ability to make effective presentations and give and receive clear and understandable instructions.
8 Gains awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously renews themselves.
9 Acts in accordance with ethical principles, gains awareness of professional and ethical responsibilities; acquires knowledge of the standards used in chemical engineering practices.
10 Gains knowledge about business practices such as project management, risk management, and change management. Has an understanding of entrepreneurship and innovation, and is knowledgeable about sustainable development.
11 Has knowledge of the impacts of chemical engineering practices on health, environment, and safety at universal and societal levels, as well as the issues reflected in the engineering field of the era. Is aware of the legal implications of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration 1 11 11
Project 1 20 20
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 125