Nuclear Energy (ENE306) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Nuclear Energy ENE306 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
ENE203
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Dr. Ahmet EGE
Course Assistants
Course Objectives The objective of this course is to introduce the fundamentals of nuclear energy, explain basic principles of nuclear phenomenon, explain the fundamentals of neutron diffusion theory, introduce nuclear power plants.
Course Learning Outcomes The students who succeeded in this course;
  • Acknowledgment of nuclear energy
  • Understanding basic nuclear cases
  • Integration of fundamental and engineering science principles
  • Knowledge in nuclear power plants
Course Content Atomic energy, radioactivity, nuclear processes, neutron-atom interactions, nuclear fission and fusion reactions, basic principles of neutron diffusion theory, nuclear energy systems, nuclear heat energy and applications, nuclear power plants.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Atom structure, Mass and Energy Relations Chapter 1
2 Radyo-aktivite, Nükleer Reaksiyonlar Chapter 1
3 Neutron-Core Reactions Chapter 2
4 Mathematical analysis of neutron scattering in the core, velocity-impuls-energy equations Chapter 3
5 Moderator-letargy concepts Chapter 4
6 Neutron diffusion equation, general information Chapter 5
7 Neutron diffusion equation, solutions in one dimensional geometry Chapter 6
8 Neutron diffusion equation, solutions in more dimensional geometry Chapter 7
9 Nuclear Materials Chapter 8
10 Midterm Exam
11 Types of Nuclear Plants Chapter 9
12 Nuclear Energy Systems Chapter 10
13 Nuclear Heat and Applications Chapter 11
14 Fusion Reactors Chapter 12
15 Nuclear Plants of fourth Generation Chapter 13
16 Fİnal Exam

Sources

Course Book 1. J.R. Lamarsh, A.J. Barata, Introduction To Nuclear Engineering, 3rd Edition, Prentice Hall, 2001
Other Sources 2. A.R. Foster, R.L.Wright Jr., Basic Nuclear Engineering, 4th Edition, Allyn and Bacon Inc., 1983
3. M.M.El-Wakil, Nuclear Heat Transport, American Nuclear Society, 1978

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 8 40
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 11 140
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Possesses sufficient knowledge in mathematics, science, and chemistry engineering-specific subjects, and gains the ability to apply theoretical and practical knowledge in these areas to complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex chemical engineering problems; selects and applies appropriate analysis and modeling methods for these purposes.
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose.
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in chemical engineering applications; uses information technologies effectively.
5 Designs experiments, conducts experiments, collects data, analyzes results, and interprets them for the investigation of complex engineering problems or research topics specific to the chemical engineering discipline.
6 Gaining the ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Communicates effectively in both spoken and written Turkish and gains proficiency in at least one foreign language. Writes effective reports, understands written reports, and prepares design and production reports. Gains the ability to make effective presentations and give and receive clear and understandable instructions.
8 Gains awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously renews themselves.
9 Acts in accordance with ethical principles, gains awareness of professional and ethical responsibilities; acquires knowledge of the standards used in chemical engineering practices.
10 Gains knowledge about business practices such as project management, risk management, and change management. Has an understanding of entrepreneurship and innovation, and is knowledgeable about sustainable development.
11 Has knowledge of the impacts of chemical engineering practices on health, environment, and safety at universal and societal levels, as well as the issues reflected in the engineering field of the era. Is aware of the legal implications of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project
Report
Homework Assignments 8 3 24
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 150