Environmental Pollution (CEAC442) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Environmental Pollution CEAC442 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To enable student to find the answers for the following questions and to better understand the environmental pollution issues through them: what is environmental pollution, why is it important, what are the root causes of the pollution, what are the pollutants, what does happen to pollutants in the environment, what are the environmental and health impacts of pollutants?
Course Learning Outcomes The students who succeeded in this course;
  • Assess the sources and the effects of the global warming, ozone depletion, air pollution
  • Assess the sources and the effects of water pollution.
  • Assess the sources and the effects of soil (land) pollution.
  • Comprehend the importance of the terms; pollutants, environmental pollution, air pollution, soil (land) pollution.
Course Content Assessing environmental impact, risk analysis, water pollution, wastewater treatment, air pollution, air pollution control, solid wastes, hazardous wastes.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Understanding pollution Chapter 1
2 Understanding pollution Chapter 1
3 Reducing pollution Chapter 2
4 Chemical toxicity Chapter 3
5 Chemical exposures and risk assessment Chapter 4
6 Air pollution Chapter 5
7 Acidic deposition Chapter 6
8 Global climate change Chapter 7
9 Midterm
10 Stratospheric-ozone depletion Chapter 8
11 Water pollution and drinking water pollution Chapter 9-10
12 Soil (land) pollution, solid waste Chapter 11
13 Student presentations
14 Hazardous waste Chapter 12
15 Persistent, bioaccumulative, and toxic (PBT) chemicals Chapter 14
16 Final exam

Sources

Course Book 1. M.K. Hill, Understanding Environmental Pollution, Cambridge Press, 2004

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 30
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering to solve chemical engineering and applied chemistry problems. X
2 An ability to analyze and model a domain specific problem, identify and define the appropriate requirements for its solution. X
3 An ability to design, implement and evaluate a chemical engineering system or a system component to meet specified requirements. X
4 An ability to use the modern techniques and engineering tools necessary for chemical engineering practices. X
5 An ability to acquire, analyze and interpret data to understand chemical engineering and applied chemistry requirements. X
6 The ability to demonstrate the necessary organizational and business skills to work effectively in inter/inner disciplinary teams or individually. X
7 An ability to communicate effectively in Turkish and English. X
8 Recognition of the need for, and the ability to access information, to follow recent developments in science and technology and to engage in life-long learning. X
9 An understanding of professional, legal, ethical and social issues and responsibilities in chemical engineering and applied chemistry. X
10 Skills in project and risk management, awareness about importance of entrepreneurship, innovation and long-term development, and recognition of international standards and methodologies. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 13 3 39
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 13 1 13
Presentation/Seminar Prepration 1 20 20
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 30 30
Total Workload 122