ECTS - Energy Laws and Regulations

Energy Laws and Regulations (ENE418) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Energy Laws and Regulations ENE418 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The aim of this elective course is to examine and evaluate the related laws and regulations and international agreements and protocols.
Course Learning Outcomes The students who succeeded in this course;
  • To understand the general principles or energy market
  • To understand the environmental and legal regulations for energy production
  • Become familier with electrical power systems and smart grid
Course Content An introduction to energy law and regulation in Turkey, energy market, nuclear safety regulations, renewable energy regulations and distributed generation, environmental impact assessment regulation, smart grid.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction: Framing the energy problem -
2 Basic principles of utility law -
3 Theory and practice or energy regulation -
4 Theory and practice or energy regulation -
5 Introduction to electrical power systems -
6 Introduction to electricity market -
7 Introduction to electricity market -
8 Midterm Exam
9 The basic regulatory framework for nuclear safety -
10 Renewable energy regulations and promotes -
11 Renewable energy regulations and promotes -
12 Renewable energy and distributed generation -
13 Conventional energy production regulations -
14 Environmental Impact Assessment Regulation -
15 Smart grid -
16 Final Exam

Sources

Other Sources 1. Casebook: Fred Bosselman et al., Energy, Economics and the Environment: Cases and Materials, 3rd Edition (Foundation Press: 2010)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 40
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 60
Final Exam/Final Jury 1 50
Toplam 3 150
Percentage of Semester Work 50
Percentage of Final Work 50
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines.
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. X
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. X
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. X
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. X
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration 1 5 5
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125