Bioenergy Technologies (ENE420) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Bioenergy Technologies ENE420 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Experiment, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course introduce technological and economical subjects involved in developing biomass energy as a renewable energy source. Bioenergy, bioenergy economics, bioenergy and environment, feed-stock selection, feed-stock conversion are subjects will be introduced in lecture.
Course Learning Outcomes The students who succeeded in this course;
  • To be aware of the principles and applications of bioenergy systems
  • Understand the availability of biomass feedstocks in different area and weather condition and their potential attributes to biofuels production
  • Gain knowledge about conversion processes of biomass feedstock to biofuels
Course Content Biomass as an energy source, photosynthesis of biomass, its conversion related properties, physical conversion processes, thermal conversion, synthetic oxygenated liquid fuels.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to bioenergy
2 Bioenergy economics
3 Bioenergy and enviroment
4 Feedstock structure
5 Feedstock selection
6 Feedstock conversion
7 Feedstock conversion
8 Feedstock conversion
9 Midterm Exam
10 Metabolic engineering
11 Introduction to metabolic engineering
12 Metabolic engineering
13 Metabolic engineering
14 Introduction to life cycle engineering
15 Life cycle engineering
16 Fİnal Exam

Sources

Other Sources 1. http://energy.gov/science-innovation/energy-sources/renewable-energy RENEWABLE ENERGY, Department of Energy
2. http://www.biomasscenter.org/about-berc.html The Biomass Energy Resource Center (BERC)
3. http://www.nal.usda.gov/natural-resources-and-environment/energy/bioenergy-andbiofuels

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 9 140
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. X
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. X
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. X
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. X
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125