Power System Analysis (EE451) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Power System Analysis EE451 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
(EE313 veya EE352)
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Question and Answer, Drill and Practice, Problem Solving, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Ayhan ALBOSTAN
Course Assistants
Course Objectives • Learning the basics in power systems • Learning current and voltage relations for short/medium/long transmission lines • Understanding The Single-Line Diagram • Obtaining bus admittance and impedance matrices • Learning power flow analysis • Analyzing symmetrical faults • Learning Symmetrical Components Theory • Analyzing unsymmetrical faults
Course Learning Outcomes The students who succeeded in this course;
  • 1. Be able to work with real, reactive and apparent powers
  • 2. Be able to calculate current and voltage quantities for short/medium/long transmission lines
  • 3. Be able to calculate per unit quantities
  • 4. Be able to calculate node voltages for overall network
  • 5. Be able to solve power flow problems
  • 6. Be able to analyze symmetrical faults
  • 7. Be able to calculate symmetrical components
  • 8. Be able to analyze unsymmetrical faults
Course Content Basic concepts in power systems, current and voltage relations on a transmission line, the single-line diagram, per-unit quantities, impedance and reactance diagrams, the admittance model and network calculations, the impedance model and network calculations, power flow analysis, symmetrical faults, symmetrical components, unsymmetrical faults, pow

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Basic Concepts in Power Systems Please, download the lecture notes and review them before the lesson
2 Current and Voltage Relations on a Transmission Line Please, review last week lecture notes and glance this week’s topics from the lecture notes
3 Current and Voltage Relations on a Transmission Line Please, review last week lecture notes and glance this week’s topics from the lecture notes
4 The Single-Line Diagram Impedance and Reactance Diagrams Please, review last week lecture notes and glance this week’s topics from the lecture notes
5 Per-Unit Quantities Please, review last week lecture notes and glance this week’s topics from the lecture notes
6 The Admittance Model and Network Calculations Please, review last week lecture notes and glance this week’s topics from the lecture notes
7 The Impedance Model and Network Calculations Please, review last week lecture notes and glance this week’s topics from the lecture notes
8 Power Flow Analysis - Gauss-Seidel power flow solution Please, review last week lecture notes and glance this week’s topics from the lecture notes
9 Power Flow Analysis - Newton-Raphson power flow solution - Introduction to power flow analysis software Please, review last week lecture notes and glance this week’s topics from the lecture notes
10 Symmetrical Faults Please, review last week lecture notes and glance this week’s topics from the lecture notes
11 Symmetrical Components Please, review last week lecture notes and glance this week’s topics from the lecture notes
12 Unsymmetrical Faults Please, review last week lecture notes and glance this week’s topics from the lecture notes
13 Unsymmetrical Faults Önceki hafta notlarını gözden geçiriniz, bu haftaki ders notlarına göz atınız.
14 Power System Stability Please, review last week lecture notes and glance this week’s topics from the lecture notes
15 Final examination period Review of topics
16 Final examination period Review of topics

Sources

Course Book 1. 1. Power System Analysis, John J. Grainger, William D. Stevenson, Jr., Mc Graw Hill Series, Int. Edition 1994.
2. 2. Power System Analysis, Arthur R. Bergen, Vijay Vittal, Prentice Hall, Second Edition, 2000.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 10
Presentation - -
Project 2 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. X
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. X
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. X
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. X
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. X
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 4 64
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 2 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 2 4
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 129