ECTS - Multidisciplinary Engineering Design

Multidisciplinary Engineering Design (MECE422) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Multidisciplinary Engineering Design MECE422 Area Elective 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The main objective of the course is to practice an engineering capstone design project in multidisciplinary domain. Students are organized to work in multidisciplinary teams to gain a broad experience on multidisciplinary engineering design process. The course prepares students with the necessary foundations and recognized skills starting from need identification/project proposal up to the detailed design and/or computer implementation. The lectures are organized to focus on advantages and limitations of multidisciplinary design and emphasize capstone engineering design projects with cross disciplinary design features. Design projects are required to be fully compatible with the available contemporary engineering technology.
Course Learning Outcomes The students who succeeded in this course;
  • 1. to collect and analyze available engineering information on a specific design need with multidisciplinary features
  • 2. to apply knowledge, skills and processes from several disciplines to conduct engineering analysis and practice engineering design
  • 3. to develop team skills, consulting and organization in multidisciplinary domain properly using project management techniques
  • 4. to make oral/written design presentations
Course Content Design process and methodology; identification of engineering disciplines, features and importance of multidisciplinary engineering design; systems engineering; need identification and assessment, problem definition; creativity and idea generation; methods and tools of functional/physical/task decomposition; design representation techniques, conceptual modeling of energy, information and material flow in technical systems; idea selection, decision schemes; product architecture

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. X
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. X
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. X
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions. X
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity. X
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader. X
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession). X
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation. X
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0