ECTS - Finite Element Analysis for Manufacturing

Finite Element Analysis for Manufacturing (MFGE310) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Finite Element Analysis for Manufacturing MFGE310 Area Elective 2 0 2 3 5
Pre-requisite Course(s)
ME210 ve MATH380
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Caner Şimşir
Course Assistants
Course Objectives This course is intended to acquaint the students with the fundamentals of finite element method as a tool for solving linear problems of solid mechanics and steady–state heat conduction problems.
Course Learning Outcomes The students who succeeded in this course;
  • Students will cultivate understanding about fundamentals of finite element method as a tool for solving linear problems of solid mechanics and heat conduction problems.
  • Students will have hands-on experience using commercial Finite Element Packages which are widely utilized by the Industry.
  • Students are expected to realize the importance and potential of computer aided analysis tools in the context of manufacturing engineering.
Course Content Direct approach, plane strain, plane stress and axisymmetric problems, principle of virtual work based formulation for 2D problems, FEM for heat transfer problems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to FEM Chapter 1
2 Introduction to FEM Chapter 2
3 Introduction to FEM Chapter 3
4 Introduction to FEA Software Chapter 4
5 Introduction to FEA Software Chapter 5
6 FEA of Linear Elasticity Problems Chapter 6
7 Ex: Beam Bending Problem Chapter 7
8 Ex: Stress Concentration Problem Chapter 8
9 FEA of Plasticity and Non-Linear Problems Chapter 9
10 Ex: Tensile Test Chapter 10
11 FEA of Contact Problems Chapter 11
12 Ex: Air Bending of a Sheet Chapter 12
13 FEA of Problems involving Friction Chapter 13
14 Ex: Plane-Strain Extrusion Chapter 14
15 Final Exam All chapters
16 Final Exam All chapters

Sources

Course Book 1. Nitin S Gokhale, Practical Finite Element Analysis, ISNBN 8190619519, Ohio, 2002
Other Sources 2. MSc.Marc Student Edition Documentation

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 30
Toplam 4 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. X
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. X
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory 16 2 32
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 16 16
Total Workload 128