ECTS - Finite Element Analysis for Manufacturing

Finite Element Analysis for Manufacturing (MFGE310) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Finite Element Analysis for Manufacturing MFGE310 Area Elective 2 0 2 3 5
Pre-requisite Course(s)
ME210 ve MATH380
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Caner Şimşir
Course Assistants
Course Objectives This course is intended to acquaint the students with the fundamentals of finite element method as a tool for solving linear problems of solid mechanics and steady–state heat conduction problems.
Course Learning Outcomes The students who succeeded in this course;
  • Students will cultivate understanding about fundamentals of finite element method as a tool for solving linear problems of solid mechanics and heat conduction problems.
  • Students will have hands-on experience using commercial Finite Element Packages which are widely utilized by the Industry.
  • Students are expected to realize the importance and potential of computer aided analysis tools in the context of manufacturing engineering.
Course Content Direct approach, plane strain, plane stress and axisymmetric problems, principle of virtual work based formulation for 2D problems, FEM for heat transfer problems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to FEM Chapter 1
2 Introduction to FEM Chapter 2
3 Introduction to FEM Chapter 3
4 Introduction to FEA Software Chapter 4
5 Introduction to FEA Software Chapter 5
6 FEA of Linear Elasticity Problems Chapter 6
7 Ex: Beam Bending Problem Chapter 7
8 Ex: Stress Concentration Problem Chapter 8
9 FEA of Plasticity and Non-Linear Problems Chapter 9
10 Ex: Tensile Test Chapter 10
11 FEA of Contact Problems Chapter 11
12 Ex: Air Bending of a Sheet Chapter 12
13 FEA of Problems involving Friction Chapter 13
14 Ex: Plane-Strain Extrusion Chapter 14
15 Final Exam All chapters
16 Final Exam All chapters

Sources

Course Book 1. Nitin S Gokhale, Practical Finite Element Analysis, ISNBN 8190619519, Ohio, 2002
Other Sources 2. MSc.Marc Student Edition Documentation

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 30
Toplam 4 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. X
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. X
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. X
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory 16 2 32
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 16 16
Total Workload 128