Theory of Machines (MECE303) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Machines MECE303 5. Semester 3 1 0 3 6
Pre-requisite Course(s)
MECE204
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of the course is to introduce the preliminary concepts of mechanisms and to present methods of analysis for the motion and force transmission in mechanisms. In this introductory course in mechanisms, basics of mechanism analysis, cams, and gear trains will be discussed.
Course Learning Outcomes The students who succeeded in this course;
  • 1. to be able to identify mechanisms, determine degrees of freedom
  • 2. to be able to make kinematic analysis of mechanisms
  • 3. to be able to make force analysis of mechanisms
  • 4. to be able to graphically synthesize certain mechanisms including dyads with specified two or three positions
Course Content Introduction to mechanisms: basic concepts, mobility, basic types of mechanisms; position, velocity and acceleration analysis of linkages; cam mechanisms, gear trains; static and dynamic force analysis of mechanisms.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to mechanisms and basic concepts, joint and link types, kinematic chain, degrees of freedom of mechanisms
2 Four-bar linkage: Grashof's law, transmission angle, mechanical advantage, coupler curves
3 Kinematic inversion, Grubler’s equation and enumeration of mechanisms
4 Kinematic analysis of mechanisms, loop closure equations and their representation by vectors and complex numbers
5 Position analysis of mechanisms, solution techniques for loop closure equations
6 Position analysis of mechanisms, solution techniques for loop closure equations (cont’d)
7 Position analysis of mechanisms, solution techniques for loop closure equations (cont’d)
8 Velocity and acceleration analysis of mechanisms
9 Velocity and acceleration analysis of mechanisms (cont’d)
10 Cam mechanisms; analysis and design
11 Gear trains, simple gear trains
12 Planetary gear trains, bevel gears
13 Static force analysis of mechanisms
14 Dynamic force analysis of mechanisms (cont’d)
15 Exam Week
16 Exam Week

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. X
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. X
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results.
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity. X
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0