Machine Elements (ME316) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Machine Elements ME316 6. Semester 3 1 0 3 7
Pre-requisite Course(s)
(ME210 veya ME211)
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Hakan KALKAN
Course Assistants
Course Objectives The aim of this course is to introduce students with fundamental Machine Elements in mechanical systems. Besides introduction of the machine elements, some mechanics of materials related topics such as 3-D stress analysis and failure theories are also given.
Course Learning Outcomes The students who succeeded in this course;
  • The students will have the ability to analyze stress state at a point in members under combined loading.
  • The students will have the ability to apply static and fatigue failure theories to mechanical design problems.
  • The students will have the ability to design shafts, threaded fasteners, gear drives, springs and flexible machine elements.
  • The students will have the ability to select rolling contact bearings.
  • The students will have the ability to identify and explain clutches, brakes, couplings and flywheels.
Course Content 2-D and 3-D stress analysis; static failure criteria, factor of safety; fatigue failure criteria, S-N curves, stress concentration; design of shafts and detachable joints; design of threaded fasteners and power screws; design of rolling contact bearings; power transmission; design of gear drives, spur gears, helical gears; design of belt drives;

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Concepts of stress and strength, principal stresses, factor of safety.
2 Static failure criteria.
3 Fatigue failure criteria, S-N curves, and effect of mean stress.
4 Design of shafts
5 Design of shafts.
6 Threaded fasteners; Design of power screws.
7 Selection of rolling contact bearings.
8 Selection of rolling contact bearings using interactive catalogues
9 Kinematics of gear drives, spur gears, helical gears, bevel gears, worm gears
10 Design of gear drives, spur gears, helical gears.
11 Design of gear drives, spur gears, helical gears.
12 Design of belt drives, flat belts, V
13 Design of Springs
14 Clutches, Brakes, Couplings and Flywheels
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. Shigley J E, Mischke C R, Mechanical Engineering Design, ISBN: 0-07-008303-7

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 8 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. X
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines.
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. X
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. X
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. X
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 16 1 16
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 5 4 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 20 40
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 192