Machine Elements (ME316) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Machine Elements ME316 3 1 0 3 7
Pre-requisite Course(s)
ME 210/ME 211
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Celal Evci
Course Assistants
Course Objectives The aim of this course is to introduce students with fundamental Machine Elements in mechanical systems. Besides introduction of the machine elements, some mechanics of materials related topics such as 3-D stress analysis and failure theories are also given.
Course Learning Outcomes The students who succeeded in this course;
  • The students will have the ability to 1. analyze stress state at a point in members under combined loading 2. apply static and fatigue failure theories to mechanical design problems 3. design shafts, threaded fasteners, gear drives, springs and flexible machine elements 4. select rolling contact bearings 5. identify and explain clutches, brakes, couplings and flywheels
Course Content 2-D and 3-D stress analysis; static failure criteria, factor of safety; fatigue failure criteria, S-N curves, stress concentration; design of shafts and detachable joints; design of threaded fasteners and power screws; design of rolling contact bearings; power transmission; design of gear drives, spur gears, helical gears; design of belt drives;

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Concepts of stress and strength, principal stresses, factor of safety.
2 Static failure criteria.
3 Fatigue failure criteria, S-N curves, and effect of mean stress.
4 Design of shafts
5 Design of shafts.
6 Threaded fasteners; Design of power screws.
7 Selection of rolling contact bearings.
8 Selection of rolling contact bearings using interactive catalogues
9 Kinematics of gear drives, spur gears, helical gears, bevel gears, worm gears
10 Design of gear drives, spur gears, helical gears.
11 Design of gear drives, spur gears, helical gears.
12 Design of belt drives, flat belts, V
13 Design of Springs
14 Clutches, Brakes, Couplings and Flywheels
15 Final Examination Period
16 Final Examination Period


Course Book 1. Shigley J E, Mischke C R, Mechanical Engineering Design, ISBN: 0-07-008303-7

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 8 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering.
2 An ability to design and conduct experiments, as well as to analyse and interpret data.
3 An ability to design a system, component, or process to meet desired needs.
4 An ability to function on multi-disciplinary teams.
5 An ability to identify, formulate, and solve engineering problems.
6 An understanding of professional and ethical responsibility.
7 An ability to communicate effectively.
8 The broad education necessary to understand the impact of engineering solutions in a global and societal context.
9 Mühendislik çözümlerinin küresel ve toplumsal boyutlarda etkisini anlamak için gereken kapsamlı eğitim.
10 A knowledge of contemporary issues.
11 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
12 Skills in project management and recognition of international standards and methodologies.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory 14 1 14
Special Course Internship
Field Work
Study Hours Out of Class 14 5 70
Presentation/Seminar Prepration
Homework Assignments 5 4 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 22 44
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 210