ECTS - Introduction to Manufacturing Processes

Introduction to Manufacturing Processes (MFGE205) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Manufacturing Processes MFGE205 3. Semester 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Field Trip.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. C. Merih Şengönül
Course Assistants
Course Objectives This course aims to acquaint the students with principles, concepts and techniques that are essential in manufacturing processes in a wide range of industrial applications.
Course Learning Outcomes The students who succeeded in this course;
  • Students will develop an understanding of manufacturing systems
  • Students will get acquainted with mechanical and physical properties of materials and their effects on the processing conditions
  • Students will have understanding of shape forming processes and the selection of the best manufacturing process for particular application from both technical and economical perspective
  • Students will have hands-on-touch experience during the machine-shop hour about machine tools, metal removal and finishing processes, casting, rolling and hardness measurement.
  • Students will cultivate understanding about the capabilities and limitations of manufacturing processes, and relationship among technical and economic factors involved in manufacturing
Course Content Mechanical and physical properties of materials, metal casting, mechanical deformation processes (bulk and sheet forming), machining and joining operations, powder metallurgy, non traditional processes, micro and nano fabrication technologies.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Manufacturing Processes Chapter 1
2 Mechanical Properties of Materials and their characterization Chapter 2
3 Mechanical Properties of Materials and their characterization Chapter 3
4 Mechanical Properties-processing relationship and Flow curves Chapter 4
5 Hot Forming Processes and change in mechanical properties Chapter 5
6 Metal Casting Chapter 6
7 Bulk Metal Forming Processes, Forging Chapter 7
8 Bulk Metal Forming Processes, Rolling Chapter 8
9 Bulk metal Forming Processes, Extrusion and wire drawing Chapter 9
10 Special Experiment on Casting of Al, rolling of cast Al and subsequent hardness measurements Chapter 10
11 Sheet Metal Forming Processes Chapter 11
12 Sheet Metal Forming Processes Chapter 12
13 Machining Processes Chapter 13
14 Machining Processes Chapter 14
15 Joining processes Chapter 15
16 Powder Metallurgy Chapter 16

Sources

Course Book 2. Mikell P. Groover, Fundamentals of Modern Manufacturing, Materials, Processes and Systems.
6. Principles of Metal Manufacturing Processes, by J. Beddoes, M.J. Bibby, Arnold Publishers, (1999)
Other Sources 3. Introduction to Manufacturing Processes, by John A. Schey, McGraw-Hill Science Engineering (1999)
4. Materials and Processes in Manufacturing by E. Paul Degarmo, J T. Black, Ronald A. Kohser, John Wiley and Sons Inc, (2003)
5. İmal Usulleri, Prof. Dr. Mustafa Çiğdem, Çağlayan Kitapevi
7. Üretim Yöntemleri ve İmalat Teknolojileri, Mustafa Aydın, Muammer Gavas, Mustafa Yaşar, Yahya Altunpark, Seçkin Yayıncılık

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 15
Application 1 5
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 5
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 20
Toplam 8 100
Percentage of Semester Work 80
Percentage of Final Work 20
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. X
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. X
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. X
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. X
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. X
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. X
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. X
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory 13 2 26
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 5 5
Report
Homework Assignments 1 5 5
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 3 6
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 125