Fluid Mechanics II (ME302) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Fluid Mechanics II ME302 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
AE307
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To teach derivation and application of basic equations in differential form governing the fluid motion, calculation of forces exerted by flows on bodies.
Course Learning Outcomes The students who succeeded in this course;
  • Understanding and usage of basic approached employed for detailed analysis of flow fields and their applications to engineering flow problems.
Course Content Akışkan hareketinin diferansiyel analizine giriş, süreklilik, momentum ve enerji denklemleri, sıkıştırılamaz sürtünmesiz akış, hız potansiyeli, akım fonksiyonu, temel düzlemsel akış, boyut analizi ve benzerlik, sıkıştırılamaz viskoz akış, Navier-Stokes denklemleri, laminer, türbülanslı akışta sınır tabaka, daldırılmış cisimler etrafında akış.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Internal Incompressible Viscous Flow Chapter 8
2 Internal Incompressible Viscous Flow Chapter 8
3 Internal Incompressible Viscous Flow Chapter 8
4 External Incompressible Viscous Flow Chapter 9
5 External Incompressible Viscous Flow Chapter 9
6 External Incompressible Viscous Flow Chapter 9
7 Fluid Machinery Chapter 10
8 Fluid Machinery Chapter 10
9 Fluid Machinery Chapter 10
10 Introduction to Compressible Flow Chapter 11
11 Introduction to Compressible Flow Chapter 11
12 Compressible Flow Chapter 12
13 Compressible Flow Chapter 12
14 Compressible Flow Chapter 12
15 Final Examination Period Review of Topics
16 Final Examination Period Review of Topics

Sources

Course Book 1. Fox, R.W., McDonald, A.T. and Pritchard, P.J., Introduction to Fluid Mechanics, 7E, John Wiley & Sons, 2008.
Other Sources 2. Munson, B.R., Young, D.F., Fundamentals of Fluid Mechanics, 6E, John Wiley, 2009.
3. Frank M. White, Fluid Mechanics, 7E, McGraw-Hill, 2011

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 8 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 11 100
Percentage of Semester Work 40
Percentage of Final Work 60
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. X
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. X
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. X
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments 8 3 24
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury
Total Workload 124