Thermal Systems Design (ME408) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Thermal Systems Design ME408 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
(AE307 veya AE307 veya CE307) ve (ENE301 veya ENE302 veya ENE301)
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Project Design/Management.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Students are expected to review and use basic knowledge from thermodynamics, fluid mechanics and heat transfer, understand and be comfortable with thermal system component analysis and their synthesis in integral enginnering systems and processes. Any design course invites extensive use of engineering application software in order to minimize tedious manual work and maximize efficiency of interpolation, iteration, what-if analysis, graphing etc.
Course Learning Outcomes The students who succeeded in this course;
  • Students are expected to be comfortable with thermal system component analysis and their synthesis.
  • Design of complete thermal systems is stressed.
  • Students are also expected to do thermoeconomic optimization, thermoeconomic analysis and evaluation.
Course Content Sistem tasarım kavramları, matematiksel modelleme, optimizasyon metotları, büyük sistemlerin kararlı hal simülasyonu, fan, pompa, ısı değiştirgeçleri, lüleler ve difüzörler, kanallardaki akış, ısıl sistemlerin dinamik davranışı.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapter 1
2 Basic Considerations In Design Chapter 2
3 Modeling of Thermal Systems Chapter 3
4 Modeling of Thermal Systems Chapter 3
5 Numerical Modeling And Simulation Chapter 4
6 Numerical Modeling And Simulation Chapter 4
7 Acceptable Design Of A Thermal System Chapter 5
8 Acceptable Design Of A Thermal System Chapter 5
9 Acceptable Design Of A Thermal System Chapter 5
10 Economic Considerations Chapter 6
11 Economic Considerations Chapter 6
12 Problem Formulation For Optimization Chapter 7
13 Problem Formulation For Optimization Chapter 7
14 Lagrange Multipliers Chapter 8
15 Final Examination Period Review of Topics
16 Final Examination Period Review of Topics

Sources

Course Book 1. Design and Optimization of Thermal Systems, 2nd Edition, Y. Jaluria, CRC Press, 2007
Other Sources 2. Any mechanical engineering thermodynamics textbook
3. Any heat transfer textbook

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. X
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. X
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. X
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. X
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 25 25
Report
Homework Assignments 8 2 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury
Total Workload 141