ECTS - Thermal Systems Design
Thermal Systems Design (ME408) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Thermal Systems Design | ME408 | Area Elective | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
(AE307 veya AE307 veya CE307) ve (ENE301 veya ENE302 veya ENE301) |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Project Design/Management. |
Course Lecturer(s) |
|
Course Objectives | Students are expected to review and use basic knowledge from thermodynamics, fluid mechanics and heat transfer, understand and be comfortable with thermal system component analysis and their synthesis in integral enginnering systems and processes. Any design course invites extensive use of engineering application software in order to minimize tedious manual work and maximize efficiency of interpolation, iteration, what-if analysis, graphing etc. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Sistem tasarım kavramları, matematiksel modelleme, optimizasyon metotları, büyük sistemlerin kararlı hal simülasyonu, fan, pompa, ısı değiştirgeçleri, lüleler ve difüzörler, kanallardaki akış, ısıl sistemlerin dinamik davranışı. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction | Chapter 1 |
2 | Basic Considerations In Design | Chapter 2 |
3 | Modeling of Thermal Systems | Chapter 3 |
4 | Modeling of Thermal Systems | Chapter 3 |
5 | Numerical Modeling And Simulation | Chapter 4 |
6 | Numerical Modeling And Simulation | Chapter 4 |
7 | Acceptable Design Of A Thermal System | Chapter 5 |
8 | Acceptable Design Of A Thermal System | Chapter 5 |
9 | Acceptable Design Of A Thermal System | Chapter 5 |
10 | Economic Considerations | Chapter 6 |
11 | Economic Considerations | Chapter 6 |
12 | Problem Formulation For Optimization | Chapter 7 |
13 | Problem Formulation For Optimization | Chapter 7 |
14 | Lagrange Multipliers | Chapter 8 |
15 | Final Examination Period | Review of Topics |
16 | Final Examination Period | Review of Topics |
Sources
Course Book | 1. Design and Optimization of Thermal Systems, 2nd Edition, Y. Jaluria, CRC Press, 2007 |
---|---|
Other Sources | 2. Any mechanical engineering thermodynamics textbook |
3. Any heat transfer textbook |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 4 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 7 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | X | ||||
2 | Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. | X | ||||
4 | Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. | X | ||||
5 | Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. | X | ||||
6 | Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
7 | Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. | |||||
10 | Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. | X | ||||
11 | Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. | X | ||||
12 | Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | 1 | 25 | 25 |
Report | |||
Homework Assignments | 8 | 2 | 16 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 15 | 30 |
Prepration of Final Exams/Final Jury | |||
Total Workload | 141 |