ECTS - Introduction to Mechanical Engineering

Introduction to Mechanical Engineering (ME101) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Mechanical Engineering ME101 2. Semester 1 0 0 1 1.5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Bilgin KAFTANOĞLU
Course Assistants
Course Objectives To train students about history of mechanical engineering, sub-disciplines of mechanical engineering, skills necessary for a degree in mechanical engineering and curricula, and career opportunities in mechanical engineering.
Course Learning Outcomes The students who succeeded in this course;
  • Giving the students, coming to Department of Mechanical Engineering, fundamental information about mechanical engineering
  • Knowledge about Mechanical Engineering
Course Content History of mechanical engineering, its areas of interest and its relationship with the other engineering disciplines, sub-disciplines of mechanical engineering, design, materials, mechanical and thermal sciences, emerging technologies and latest trends in mechanical engineering, skills necessary for a degree in mechanical engineering and

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The Mechanical Engineering Profession Chapter 1
2 The Mechanical Engineering Profession Chapter 1
3 Problem Solving and Communication Skills Chapter 2
4 Forces In Structures And Machines Chapter 3
5 Forces In Structures And Machines Chapter 3
6 Materials And Stresses Chapter 4
7 Materials And Stresses Chapter 4
8 Fluids Engineering Chapter 5
9 Fluids Engineering Chapter 5
10 Thermal and Energy Systems Chapter 6
11 Thermal and Energy Systems Chapter 6
12 Motion And Power Transmission Chapter 7
13 Mechanical Design Chapter 8
14 Mechanical Design Chapter 8
15 Final Examination Period Review of Topics
16 Final Examination Period Review of Topics

Sources

Course Book 1. An Introduction to Mechanical Engineering, 2nd Ed., J. Wickert, Thomson Learning, 2006

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 14 40
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury 1 60
Toplam 15 100
Percentage of Semester Work 40
Percentage of Final Work 60
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines.
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. X
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. X
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. X
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. X
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. X
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. X
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 1 14
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 1 14
Presentation/Seminar Prepration
Project
Report
Homework Assignments 7 2 14
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 57