# Mechanical Vibrations (ME425) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Mechanical Vibrations ME425 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English N/A Bachelor’s Degree (First Cycle) Face To Face Lecture, Demonstration. 1) Identify the equivalent lumped parameter models of mechanical systems; 2) Derive the equation of motion using free-body-diagrams and energy methods; 3) Solve the vibrations of single and two-degrees of freedom systems; 4) Design for reduced vibrations; 5) Understand the Frequency Response Functions and modal analysis; 6) Simulate the systems using computation software. The students who succeeded in this course; Temel tanımlar, tek serbestlik dereceli sistemler, titreşim yalıtımı, iki serbestlik dereceli sistemler: hareket denklemleri, koordinat dönüşümleri, temel koordinatlar, titreşim modları, torsiyonel titreşim, çoklu serbestlik dereceli sistemler, koordinat dönüşümler ve normal koordinatlar, modal analiz, harmonik zorlamalı sistemlerin çözümü.

### Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Concepts of vibrations
2 Lumped parameter systems
3 Introduction to Matlab: Basics and essentials
4 Response of undamped SDOF systems to initial excitations
5 Response of damped SDOF systems to initial excitations
6 Matlab : Effect of damping of SDOF systems and its measurement
7 Response of SDOF systems to Harmonic and Periodic excitations
8 Systems with rotating unbalanced mass and base vibrations, whirling of shafts.
9 Matlab : Vibration isolation.
10 Response of SDOF systems to nonperiodic excitations.
11 Response of SDOF systems to arbitrary excitations.
12 Matlab session: Convolution integral.
13 2-DOF systems: Equations of motion and free vibrations.
14 2-DOF systems: Modal analysis and response to harmonic excitations.
15 Review before Final exam
16 Review before Final exam

### Evaluation System

Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 7 15
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 35
Toplam 11 100
Percentage of Semester Work 100 100

### Course Category

Core Courses X

### The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering.
2 An ability to design and conduct experiments, as well as to analyse and interpret data.
3 An ability to design a system, component, or process to meet desired needs.
4 An ability to function on multi-disciplinary teams.
5 An ability to identify, formulate, and solve engineering problems.
6 An understanding of professional and ethical responsibility.
7 An ability to communicate effectively.
8 The broad education necessary to understand the impact of engineering solutions in a global and societal context.
9 Mühendislik çözümlerinin küresel ve toplumsal boyutlarda etkisini anlamak için gereken kapsamlı eğitim.
10 A knowledge of contemporary issues.
11 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
12 Skills in project management and recognition of international standards and methodologies.

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments 7 3 21
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15