Tool and Die Design (MFGE403) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Tool and Die Design MFGE403 Area Elective 2 0 2 3 5
Pre-requisite Course(s)
ME210
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice, Problem Solving, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Instructor Dr. Hakan Kalkan
Course Assistants
Course Objectives This course aims to introduce design and manufacturing of jigs and fixtures which are used in manufacturing processes.
Course Learning Outcomes The students who succeeded in this course;
  • The student will know tool materials and manufacturing methods of tools.
  • Ability to dimensioning and tolerancing techniques for the design of tools.
  • The student will be able to design jigs and fixtures.
  • The student will be able to design dies for sheet metal works.
  • The student will know the importance of Finite Element Analysis for the design of tools.
Course Content Introduction, definitions of jigs and fixtures, types of fixtures, design and manufacturing of jigs and fixtures, FE analysis of loading and stress analysis of jigs during processes.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Lecture Notes 1 on moodle website
2 Tooling Materials Lecture Notes 2 on moodle website
3 Dimensioning Lecture Notes 3 on moodle website
4 Sectioning Lecture Notes 4 on moodle website
5 Tolerancing Lecture Notes 5 on moodle website
6 Assembly Drawings Lecture Notes 6 on moodle website
7 Threads & Fasteners Lecture Notes 7 on moodle website
8 Tool Drawings Lecture Notes 8 on moodle website
9 Jigs & Fixtures Lecture Notes 9 on moodle website
10 Sheet Metal Bending Tools Lecture Notes 10 on moodle website
11 Sheet Metal Drawing Tools Lecture Notes 11 on moodle website
12 Sheet Metal Stretching Tools Lecture Notes 12 on moodle website
13 FE modelling of tools and dies Lecture Notes 13 on moodle website
14 Student Project Presentations Lecture Notes 14 on moodle website
15 Final Exam Lecture Notes on moodle website
16 Final Exam Lecture Notes on moodle website

Sources

Course Book 1. Fundamentals of Tool Design Author - John G. Nee, Society of Manufacturing Engineers.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 5 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines.
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory 16 2 32
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 5 5
Total Workload 126