Metal Forming (ME411) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Metal Forming ME411 Area Elective 3 1 0 3 5
Pre-requisite Course(s)
ME210
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Hakan KALKAN
Course Assistants
Course Objectives Course Objectives: In Metal Forming, students are acquainted with the basic knowledge on fundamental metal forming processes. The objective of this course is to teach metal forming theory and technology, limits of the processes, tool design and machinery selection.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be equipped with basic knowledge on metal forming processes.
  • Students will be able to approach metal forming processes both analytically and numerically.
  • Students will be able to design metal forming processes.
  • Students will learn how to put metal forming processes in a project form.
  • Students will learn to develop approaches and solutions to analyze metal forming processes and the associated problems and flaws.
Course Content Plasticity theory and metal forming, metalurgical considerations; cold, warm and hot forming; extrusion, forging, wire drawing and deep drawing.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Metal Forming Operations Chapter 1
2 Stress and strain Chapter 2
3 General Metallurgical Considerations Chapter 3
4 Yielding, Yield Criteria and Hardening Chapter 4
5 Analysis Methods Chapter 5
6 Analysis Methods : Upper Bound Methods Chapter 6
7 Analysis Methods : Numerical Methods Chapter 7
8 Deformation field geometry: Friction, redundant deformation, internal damage, residual stresses Chapter 8
9 Surface processes Chapter 9
10 Rolling and ring rolling Chapter 10
11 Forging Chapter 11
12 Forging - Extrusion Chapter 12
13 Extrusion – Wire Drawing Chapter 13
14 Sheet metal processes Chapter 14
15 Final Exam Period
16 Final Exam Period

Sources

Course Book 1. 1. Hosford, W. F., Caddell, R. M., “Metal Forming Mechanics and Metallurgy”, Prentice-Hall, 1993.
Other Sources 2. Tschaetsch, H., “Metal Forming Practice”, Springer 2006.
3. Avitzur, B., “Metal Forming: Processes and Analysis”, McGraw-Hill, 1968.
4. Lange, K. (Editor): Handbook of Metal Forming, McGraw-Hill, 1985.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. X
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. X
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. X
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions. X
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity. X
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader. X
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession). X
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation. X
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 16 1 16
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 136