Metal Forming (ME411) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Metal Forming ME411 3 1 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Hakan KALKAN
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
  • Students will be equipped with basic knowledge on metal forming processes.
  • Students will be able to approach metal forming processes both analytically and numerically.
  • Students will be able to design metal forming processes.
  • Students will learn how to put metal forming processes in a project form.
  • Students will learn to develop approaches and solutions to analyze metal forming processes and the associated problems and flaws.
Course Content Plasticity theory and metal forming, metalurgical considerations; cold, warm and hot forming; extrusion, forging, wire drawing and deep drawing.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Metal Forming Operations Chapter 1
2 Stress and strain Chapter 2
3 General Metallurgical Considerations Chapter 3
4 Yielding, Yield Criteria and Hardening Chapter 4
5 Analysis Methods Chapter 5
6 Analysis Methods : Upper Bound Methods Chapter 6
7 Analysis Methods : Numerical Methods Chapter 7
8 Deformation field geometry: Friction, redundant deformation, internal damage, residual stresses Chapter 8
9 Surface processes Chapter 9
10 Rolling and ring rolling Chapter 10
11 Forging Chapter 11
12 Forging - Extrusion Chapter 12
13 Extrusion – Wire Drawing Chapter 13
14 Sheet metal processes Chapter 14
15 Final Exam Period
16 Final Exam Period

Sources

Course Book 1. 1. Hosford, W. F., Caddell, R. M., “Metal Forming Mechanics and Metallurgy”, Prentice-Hall, 1993.
Other Sources 2. Tschaetsch, H., “Metal Forming Practice”, Springer 2006.
3. Avitzur, B., “Metal Forming: Processes and Analysis”, McGraw-Hill, 1968.
4. Lange, K. (Editor): Handbook of Metal Forming, McGraw-Hill, 1985.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 16 1 16
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 136