ECTS - Introduction to Data Science

Introduction to Data Science (SE422) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Data Science SE422 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
Course Content Python programming language for data science, data scraping, data manipulation, data visualization, use of vectors and matrices in data science, review of statistical concepts for data science, conditional probability, Bayes?s theorem, normal distribution, prediction, regression, classification and clustering.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Applies knowledge of mathematics, science, and engineering X
2 Designs and conducts experiments, analyzes and interprets experimental results. X
3 Designs a system, component, or process to meet specified requirements. X
4 Works effectively in interdisciplinary fields.
5 Identifies, formulates, and solves engineering problems. X
6 Has awareness of professional and ethical responsibility.
7 Communicates effectively.
8 Recognizes the need for lifelong learning and engages in it.
9 Has knowledge of contemporary issues. X
10 Uses modern tools, techniques, and skills necessary for engineering applications. X
11 Has knowledge of project management skills and international standards and methodologies.
12 Develops engineering products and prototypes for real-world problems. X
13 Contributes to professional knowledge.
14 Conducts methodological and scientific research. X
15 Produces, reports, and presents a scientific work based on original or existing knowledge. X
16 Defends the original idea generated.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project 3 5 15
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 5 5
Prepration of Final Exams/Final Jury 1 8 8
Total Workload 124