Semantic Web Programming (CMPE567) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Semantic Web Programming CMPE567 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course aims to provide the basic overview of what the Semantic Web is and how it can be used.
Course Learning Outcomes The students who succeeded in this course;
  • understand the concept structure of the semantic web technology and how this technology revolutionizes the World Wide Web and its uses.
  • understand the concepts of metadata, semantics of knowledge and resource, ontology, and their descriptions in XML-based syntax and web ontology language (OWL).
  • describe logic semantics and inference with OWL.
  • use ontology engineering approaches in semantic applications
Course Content XML, resource description language, web ontology language, ontologies and rules, query languages-SPARQL, ontology engineeering, semantic web applications and semantic web services.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction & XML Lecture Notes
2 Resource Description Language-RDF Lecture Notes Chapter 2 (Text Book 1)
3 Resource Description Language-RDF Lecture Notes Chapter 3 (Text Book 1)
4 Web Ontology Language-OWL Lecture Notes Chapter 4 (Text Book 1)
5 Web Ontology Language-OWL Lecture Notes Chapter 5 (Text Book 1)
6 Ontologies and Rules Lecture Notes Chapter 6 (Text Book 1)
7 Ontologies and Rules Lecture Notes Chapter 7(Text Book 1)
8 Query Languages-SPARQL Lecture Notes Chapter 7 (Text Book 1)
9 Query Languages- SPARQL Lecture Notes Chapter 7 (Text Book 1)
10 Ontology Engineeering Lecture Notes Chapter 8 (Text Book 1)
11 Ontology Engineeering Lecture Notes Chapter 8 (Text Book 1)
12 Semantic Web Applications Lecture Notes Chapter 9 (Text Book 1)
13 Semantic Web Services Lecture Notes
14 Semantic Web Services Lecture Notes
15 Review
16 Review

Sources

Course Book 1. Foundations of Semantic Web Technologies (Chapman & Hall/CRC Textbooks in Computing) Pascal Hitzler , Markus Krötzsch , Sebastian Rudolph ,Antoniou, G. and F. van Harmelen. 2004.
Other Sources 2. Powers, S. 2003. Practical RDF. Sebastopol, CA: O'Reilly.[ISBN: 0-596-00263-7]
3. Hebeler, J., Fisher, M., et al., Semantic Web Programming, Wiley, 2009
4. Grigoris Antoniou and Frank van Harmelen, A Semantic Web Primer, 2nd Edition, 2008 The Massachusetts Institute of Technology Press, ISBN: 978-0-262-01242-3

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 35
Final Exam/Final Jury 1 35
Toplam 5 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering. X
2 An ability to design and conduct experiments, as well as to analyse and interpret data. X
3 An ability to design a system, component, or process to meet desired needs. X
4 An ability to function on multi-disciplinary domains. X
5 An ability to identify, formulate, and solve engineering problems. X
6 An understanding of professional and ethical responsibility. X
7 An ability to communicate effectively. X
8 Recognition of the need for, and an ability to engage in life-long learning. X
9 A knowledge of contemporary issues. X
10 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. X
11 Skills in project management and recognition of international standards and methodologies X
12 An ability to produce engineering products or prototypes that solve real-life problems. X
13 Skills that contribute to professional knowledge. X
14 An ability to make methodological scientific research. X
15 An ability to produce, report and present an original or known scientific body of knowledge. X
16 An ability to defend an originally produced idea. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 5 15
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 130