ECTS - Advanced Artificial Intelligence

Advanced Artificial Intelligence (CMPE568) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Artificial Intelligence CMPE568 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to introduce basic concepts and different approaches to Artificial Intelligence (AI) (including symbolic and non-symbolic ones). It also aims at extending the computer engineering vision of the student, and evaluating the possible research potentials of the students on the subject.
Course Learning Outcomes The students who succeeded in this course;
  • Design an agent for a given problem
  • Understand the problems and principles of searching for solution. Distinguish among variety of search algorithms.
  • Comprehend first order logic and inference procedure in finding solutions to logical problems.
  • Describe the fundamentals for machine learning.
Course Content Intelligent agents, problem solving by searching, informed/uninformed search methods, exploration, constraint satisfaction problems, knowledge and reasoning, first-order logic, knowledge representation, learning, selected topics: neural networks, natural computing.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Intelligent Agents. Problem Solving by Searching, Chapters 2-3.3 (main text)
2 Informed/Uninformed Search Methods, Exploration Chapter 3.4-3.6
3 Local search, search with non deterministic actions and partial observation Chapter 4
4 Adversarial Search and constraint satisfaction Chapter 5,6
5 Logical Agents and first order logic Chapter 7,8
6 Inference in first order logic Chapter 9
7 Planning and acting in real world Chapter 10,11
8 Knowledge representation Chapter 12
9 Uncertain Knowledge and Reasoning. Probabilistic reasoning Chapter 13, 14, 15
10 Making simple and complex Decisions Chapter 16,17
11 Learning from examples. Knowledge in learning Chapter 18,19
12 Learning probabilistic models. Reinforcement learning Chapter 20,21
13 Selected Topics Chapter 23,24,25
14 Selected Topics Chapter 23,24,25
15 Review
16 Review

Sources

Course Book 1. Artificial Intelligence : A Modern Approach (Second Edition), Stuart Russell and Peter Norvig, Prentice-Hall, 2003, ISBN: 0-13-790395
Other Sources 2. Ant Colony Optimization, Marco Dorigo and Thomas Stützle, MIT Press, 2004. ISBN: 0-262-04219-3.
3. Artificial Intelligence, Patrick H. Winston, Addison-Wesley, 1992. ISBN: 0-201-533774.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 20
Presentation 1 15
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 40
Toplam 6 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Applies knowledge of mathematics, science, and engineering X
2 Designs and conducts experiments, analyzes and interprets experimental results. X
3 Designs a system, component, or process to meet specified requirements. X
4 Works effectively in interdisciplinary fields. X
5 Identifies, formulates, and solves engineering problems. X
6 Has awareness of professional and ethical responsibility. X
7 Communicates effectively. X
8 Recognizes the need for lifelong learning and engages in it. X
9 Has knowledge of contemporary issues. X
10 Uses modern tools, techniques, and skills necessary for engineering applications. X
11 Has knowledge of project management skills and international standards and methodologies. X
12 Develops engineering products and prototypes for real-world problems. X
13 Contributes to professional knowledge. X
14 Conducts methodological and scientific research. X
15 Produces, reports, and presents a scientific work based on original or existing knowledge. X
16 Defends the original idea generated. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration 1 10 10
Project
Report
Homework Assignments 3 6 18
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 127