ECTS - Advanced Materials of Construction

Advanced Materials of Construction (CE542) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Materials of Construction CE542 3 0 0 3 5
Pre-requisite Course(s)
DD or a better grade in CE 210 Civil Engineering Materials course (or an equivalent course)
Course Language English
Course Type N/A
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Experiment, Drill and Practice, Problem Solving, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Ertan SÖNMEZ
Course Assistants
Course Objectives The general objective of this course is to introduce the students advanced topics in materials of construction. These topics include microstructures of concrete, steel and composites, differences and similarities in response to loading and environmental effects on these materials, with emphasis on strength, elastic properties, creep, shrinkage, thermal stresses, and failure mechanisms, emerging materials in construction.
Course Learning Outcomes The students who succeeded in this course;
  • Identify the relationships between microstructural development and macroscale behavior of steel, composites and concrete.
  • Review technical information in the field of construction materials and apply this knowledge to improve sustainability of engineered structures
  • Understand the behavioral characteristics and various properties of construction materials and apply this knowledge to property development and performance of these materials.
  • Design laboratory tests to perform analysis and evaluations on specific topics of construction materials, select materials for the specific purpose of use
  • Learn to prepare reports and presentations which involves literature survey of research topics about construction materials and demonstrate improved technical communication skills, both written and oral
  • Comprehensive study of a specific civil engineering problem selected so as to integrate the knowledge acquired in the graduate program of study.
Course Content Mechanical and durability properties of construction materials, properties and microstructure of concrete in fresh and hardened state, microstructure, types and various aspects of steel, plastics and composites in construction, innovative materials of construction and the interaction of construction materials with the environment.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Materials science overview
2 Mechanical and physical properties of various materials used in constrcution
3 Temperature response of construction materials
4 Durability of materials
5 Testing of materials
6 Cement, microstructure and properties
7 Microstructural properties of hardened concrete
8 Steel-properties and microstructure
9 Steel-properties and microstructure
10 Plastics and ceramics
11 Fiber reinforced composites
12 Fiber reinforced composites
13 Cement polymer composites
14 Recent advances in materials technology
15 Final Exam Period
16 Final Exam Period

Sources

Course Book 1. Erdogan T. Materials for Construction, METU, 2005
Other Sources 2. Young J. F., Mindess S. Bentur A. and Gray R.J., The science and Technology of Civil Engineering Materials, Prentice Hall, 1998

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 1 20
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 50
Final Exam/Final Jury 1 30
Toplam 3 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to carry out advanced research activities, both individual and as a member of a team
2 Ability to evaluate research topics and comment with scientific reasoning
3 Ability to initiate and create new methodologies, implement them on novel research areas and topics
4 Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions
5 Ability to apply scientific philosophy on analysis, modelling and design of engineering systems
6 Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level
7 Contribute scientific and technological advancements on engineering domain of his/her interest area
8 Contribute industrial and scientific advancements to improve the society through research activities

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 5 3 15
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 8 8
Prepration of Final Exams/Final Jury 1 12 12
Total Workload 125