ECTS - Advanced Glass Science and Technology

Advanced Glass Science and Technology (MATE541) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Glass Science and Technology MATE541 3 0 0 3 5
Pre-requisite Course(s)
Consent of the department
Course Language English
Course Type N/A
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To advance the understanding on the glass-making process, physical and chemical properties, and applications through discussing on structural and additive effects.
Course Learning Outcomes The students who succeeded in this course;
  • To understand how glass are produced and why some materials form glasses while others do not.
  • To describe structural distinguish from crystalline materials.
  • To become aware of the physical, mechanical, thermal, and chemical properties in glasses.
  • To understand the commercial glasses and their applications.
Course Content Nucleation, Crystal growth, Glass formation, Melting of ceramic powders, Structure of glasses, Viscosity of glass forming, Density, Thermal expansion, Mechanical properties, Optical properties

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Lecture slides
2 Principles of glass formation 7~25
3 Glass melting 26~50
4 Immiscibility 51~71
5 Structures of glasses 72~109
6 Viscosity of glass forming melts 111~137
7 Density and thermal expansion 138~162
8 Transport properties 163~187
9 Mechanical properties 188~201
10 Optical properties 202~221
11 Water in glasses and melts 222~236
12 Thermal analysis of glasses 237~248
13 Glass technology 249~261
14 Commercial glasses 262~274
15 Summary
16 Final

Sources

Course Book 1. Introduction to Glass Science and Technology, 2nd ed., by J.E. Shelby, The Royal Society of Chemistry 2005
Other Sources 2. Introduction to Ceramics, Kingery, Bowen and Uhlmann, Wiley, 1976

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 10
Presentation 1 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury - -
Toplam 5 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to carry out advanced research activities, both individual and as a member of a team
2 Ability to evaluate research topics and comment with scientific reasoning
3 Ability to initiate and create new methodologies, implement them on novel research areas and topics
4 Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions
5 Ability to apply scientific philosophy on analysis, modelling and design of engineering systems
6 Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level
7 Contribute scientific and technological advancements on engineering domain of his/her interest area
8 Contribute industrial and scientific advancements to improve the society through research activities

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 4 64
Presentation/Seminar Prepration
Project
Report
Homework Assignments 1 20 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 30 60
Prepration of Final Exams/Final Jury 1 35 35
Total Workload 179