# Theory of Continuous Media I (ME661) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Continuous Media I ME661 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English Elective Courses Ph.D. Face To Face Lecture, Question and Answer. Review of tensor analysis and integral theorems. Indicial Notation, Kinematics of deformation, strain tensor, compatibility condition. Material derivative, deformation rate, spin and vorticity tensor. External and internal loads, Cauchy’s principle and stress tensors. Basic laws of continuum mechanics (conservation of mass, continuity equation, principle of linear and angular momentum, equations of motion, conservation of energy). First law of thermodynamics. The students who succeeded in this course; The students will have the ability to 1. Use indicial notation 2. Be familiar with linear vector spaces relevant to continuum mechanics and able to perform vector and tensor manipulations in Cartesian and curvilinear coordinate systems. 3. Be able to describe motion, deformation and forces in a continuum; 4. Be able to derive equations of motion and conservation laws for a continuum Review of tensor analysis and integral theorems; kinematics of deformation, strain tensor, compatibility condition; material derivative, deformation rate, spin and vorticity tensor; external and internal loads, Cauchy?s principle and stress tensors; basic laws of continuum mechanics (conservation of mass, continuity equation, principle of linear a

### Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Vector Algebra, Theory of Matrices
2 Vector Calculus, Tensors
3 Kinematics of Continua-Descriptions of Motion
4 Analysis of Deformation
5 Cauchy-Green Deformation Tensor, Infinitesimal Strain Tensor, Rotation Tensor Rate of Deformation and Vorticity Tensors
6 Cauchy Stress Tensor and Cauchy’s Formula, Transformation of Stress Components and Principal Stresses
7 Conservation of Mass
8 Conservation of Momenta
9 Thermodynamic Principles
10 Conservation of Energy
11 Special Cases of Energy Equations
12 Constitutive Equations-Elastic Solids
13 Transformation of Stress and Strain Components
14 Nonlinear Elastic Constitutive Relations

### Sources

Course Book 1. Reddy, Junuthula Narasimha. An introduction to continuum mechanics. Cambridge university press, 2013.

### Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 10
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 25
Final Exam/Final Jury 1 35
Toplam 7 100
Percentage of Semester Work 100 100

### Course Category

Core Courses X

### The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to carry out advanced research activities, both individual and as a member of a team
2 Ability to evaluate research topics and comment with scientific reasoning
3 Ability to initiate and create new methodologies, implement them on novel research areas and topics
4 Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions
5 Ability to apply scientific philosophy on analysis, modelling and design of engineering systems
6 Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level
7 Contribute scientific and technological advancements on engineering domain of his/her interest area
8 Contribute industrial and scientific advancements to improve the society through research activities

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 6 18
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 16 32
Prepration of Final Exams/Final Jury 1 30 30