ECTS - Modeling, Analysis and Simulation

Modeling, Analysis and Simulation (ENE303) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Modeling, Analysis and Simulation ENE303 3 1 0 3 5
Pre-requisite Course(s)
PHYS 101, PHYS 102
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Hüseyin OYMAK
Course Assistants
Course Objectives The objective of this course is to introduce fundamental principles and concepts in the modeling and simulation and to apply in energy systems engineering area.
Course Learning Outcomes The students who succeeded in this course;
  • Recognize the principles of modeling and simulation
  • Design and develop simulation models for energy systems
Course Content Translational mechanical systems, state-variable equations, inputoutput equations, matrix formulation, block diagrams and computer simulation, rotational mechanical systems, electrical systems, Laplace transform solutions of linear models.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Modeling and Simulation Chapter 1
2 Systems Science and Systems Engineering Chapter 2
3 A Framework for Modeling and Simulation Chapter 3
4 Defining the Need for Models and Simulation Chapter 4
5 Creating a Modeling and Simulation Baseline Chapter 5
6 Developing Models and Simulation Chapter 6
7 Designing Models Chapter 7
8 Producing and Managing Data Chapter 8
9 Midterm Exam
10 Applications of Modeling and Simulation in Energy Systems Engineering, General Chapter 9
11 Application in Thermodynamics Chapter 10
12 Applications in Thermal Fluids Chapter 11
13 Applications in Renewable Systems Chapter 12
14 Applications in Conventional Systems Chapter 13
15 Verification, Validation and Accreditation Chapter 14
16 Final Exam

Sources

Other Sources 1. Energy Systems: Optimization, Modeling, Simulation, and Economic Aspects, Journal, Springer, ISSN: 1868-3967
2. Averill M Law, Simulation Modeling and Analysis, 4th Edition, McGraw-Hill, 2007, ISBN-13 978007125519-6
3. Modeling and Analysis of Dynamic Systems, Ramin Esfandiari, CRC Press, 2010 ISBN:9781439808450
4. David J. Cloud, Applied Modeling and Simulation, McGraw-Hill, 1998, ISBN-13 9780072283037
5. Thoma, J. Ould Bouamama, B., Modeling and Simulation in Thermal and Chemical Engineering, 2000, Springer, ISBN: 978-3-540-66388-1

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 8 5
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 20
Final Exam/Final Jury 1 50
Toplam 13 100
Percentage of Semester Work 50
Percentage of Final Work 50
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquiring core knowledge of theoretical and mathematical physics together with their research methodologies.
2 Gaining a solid understanding of the physical universe together with the laws governing it.
3 Developing a working research skill and strategies of problem solving skills in theoretical, experimental, and/or simulation physics.
4 Developing and maintaining a positive attitude toward critical questioning, creative thinking, and formulating new ideas both conceptually and mathematically.
5 Ability to sense, identify, and handle the problems in theoretical, experimental, or applied physics, or in real-life industrial problems.
6 Ability to apply the accumulated knowledge in constructing mathematical models, determining a strategy for its solution, making necessary and appropriate approximations, evaluating and assessing the correctness and reliability of the procured solution.
7 Ability to communicate and discuss physical concepts, processes, and the newly obtained results with the colleagues all around the world both verbally and in written form as proceedings and research papers.
8 Reaching and excelling an advanced level of knowledge and skills in one or more of the disciplines offered.
9 An ability to produce, report and present an original or known scientific body of knowledge.
10 An ability to make methodological scientific research.
11 An ability to use existing physics knowledge to analyze, to determine a methodology of solution (theoretical/mathematical/experimental) and to solve a problem.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 8 2 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 147