Rapid Prototyping (MFGE405) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Rapid Prototyping MFGE405 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. C. Merih Şengönül
Course Assistants
Course Objectives Participants will study topics fundamental to rapid prototyping and automated fabrication, including the generation of suitable CAD models, current rapid prototyping fabrication technologies, their underlying material science, the use of secondary processing, and the impact of these technologies on society. The rapid prototyping process will be illustrated by the actual design and fabrication of a part.
Course Learning Outcomes The students who succeeded in this course;
  • Describe the current available rapid prototyping systems, their fundamental operating principles, and their characteristics
  • Describe complementary, secondary fabrication processes commonly used with the above rapid prototyping systems
  • Select the appropriate fabrication technology, or technologies, for a given prototyping task
Course Content Rapid prototyping technologies, CAD models suitable for automated fabrication, secondary processing, additive manufacturing technologies, stereolithography, fused deposition modeling, laminated object manufacturing, selective laser sintering, direct metal laser sintering, casting processes for rapid prototyping, investment casting, rapid tooling, reverse engineering.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Overview of rapid prototyping and automated fabrication technologies • What is a prototype? • Why make a prototype? • What is automated fabrication? • History of numerical control • Process planning; manual, variant, generative Chapter 1
2 Introduction to injection molding • Introduction to injection molding • Design for injection molding • Selecting materials • UL standards Chapter 2
3 Rapid prototyping technologies • Machine tool motion • History of layered manufacturing • Stereolithography • Solid ground curing • Selective laser sintering • Fused deposition modeling • Laminated object manufacturing • Other systems Chapter 3
4 Rapid prototyping technologies • Machine tool motion • History of layered manufacturing • Stereolithography • Solid ground curing • Selective laser sintering • Fused deposition modeling • Laminated object manufacturing • Other systems Chapter 4
5 The underlying material science • Photopolymers • Thermoplastics • Powders Chapter 5
6 The underlying material science • Photopolymers • Thermoplastics • Powders Chapter 6
7 Generating CAD models suitable for automated fabrication • The .STL file format • Repairing CAD models • Adding support structures • Model slicing Chapter 7
8 Generating CAD models suitable for automated fabrication • The .STL file format • Repairing CAD models • Adding support structures • Model slicing Chapter 8
9 Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications Chapter 7
10 Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications Chapter 8
11 Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications Chapter 11
12 Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications Chapter 12
13 The future • Remote manufacturing on demand • Ongoing research activities • How can these technologies be improved? Chapter 13
14 The future • Remote manufacturing on demand • Ongoing research activities • How can these technologies be improved? Chapter 14
15 Final exam period All chapters
16 Final exam period All chapters

Sources

Course Book 1. Rafiq Noorani, Rapid Prototyping: Principles and Applications, John Wiley & Sons, Inc., 2006, ISBN 0-471-73001-7
Other Sources 2. Ian Gibson (ed.), Advanced Manufacturing Technology for Medical Applications, John Wiley & Sons, Ltd., 2005, ISBN 0-470-01688-4

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 15
Laboratory 1 25
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 5 5
Homework Assignments 6 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 25
Toplam 15 100
Percentage of Semester Work 75
Percentage of Final Work 25
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the Materials Engineering; the ability to apply theoretical and practical knowledge of these areas to solve complex engineering problems and to model and solve of materials systems X
2 Understanding of science and engineering principles related to the structures, properties, processing and performance of Materials systems X
3 Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose X
4 Ability to design and choose proper materials for a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design and materials selection methods for this purpose X
5 Ability to develop, select and utilize modern techniques and tools essential for the analysis and solution of complex problems in Materails Engineering applications; the ability to utilize information technologies effectively X
6 Ability to design and conduct experiments, collect data, analyse and interpret results using statistical and computational methods for complex engineering problems or research topics specific to Materials Engineering X
7 Ability to work effectively in inter/inner disciplinary teams; ability to work individually X
8 Effective oral and written communication skills in Turkish; knowlegde of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions X
9 Recognition of the need for lifelong learning; the ability to access information; follow recent developments in science and technology with continuous self-development X
10 Ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of standards used in engineering applications X
11 Knowledge on business practices such as project management, risk management and change management; awareness in entrepreneurship and innovativeness; knowledge of sustainable development X
12 Knowledge of the effects of Materials Engineering applications on the universal and social dimensions of health, environment and safety, knowledge of modern age problems reflected on engineering; awareness of legal consequences of engineering solutions X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project
Report
Homework Assignments 6 3 18
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 2 4
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 137