ECTS - Surface Processing of Materials

Surface Processing of Materials (MATE464) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Surface Processing of Materials MATE464 3 0 0 3 5
Pre-requisite Course(s)
Consent of the department
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To introduce the scope and concepts of surface engineering to students. To teach basic tribological and corrosion aspects of surfaces and coatings. To teach various industrial gaseous, solution and molten state deposition processes of surface coatings. To transfer knowledge and establish critical awareness of the techniques used to characterize the surfaces and coatings and the principles behind their operation.
Course Learning Outcomes The students who succeeded in this course;
  • Recognition of the importance of surface engineering.
  • Understanding of the fundamental characterization of surfaces and coatings.
  • Basic understanding of the corrosion, friction, wear and lubrication of the surfaces interacting with each other and with environment.
  • Knowledge on major surface processing techniques from surface hardening with induction and carburizing to various surface coatings methods including PVD, CVD and electrodeposition.
  • Ability to specify requirements for a given application and then choose the suitable surface processing method.
Course Content Characterization of surfaces, interaction of surfaces, theory of contact mechanics, surface hardening methods, carburizing, conversion coatings, surface coating methods: gaseous, solution and molten state deposition processes, principles of physical and chemical vapor deposition, electrochemical deposition, spray coatings.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to the concepts of surface engineering. Handouts and related pages of the listed sources
2 Properties and characterization of material surfaces. Handouts and related pages of the listed sources
3 Theory of contact mechanics. Handouts and related pages of the listed sources
4 Corrosion and tribology of material surfaces. Handouts and related pages of the listed sources
5 Surface processing techniques without chemical alteration. Handouts and related pages of the listed sources
6 Surface processing techniques with chemical alteration; carburizing, nitriding. Handouts and related pages of the listed sources
7 Deposition processes of surface coatings from gaseous state; physical vapor deposition. Handouts and related pages of the listed sources
8 Deposition processes of surface coatings from gaseous state; chemical vapor deposition. Handouts and related pages of the listed sources
9 Deposition processes of surface coatings from liquid solutions; electro and electroless deposition. Handouts and related pages of the listed sources
10 Deposition processes of surface coatings from molten state; galvanizing. Handouts and related pages of the listed sources
11 Spray Deposition; themal spray, plasma spray and cold spray. Laser cladding. Handouts and related pages of the listed sources
12 Mechanical and structural characterization of coatings. Handouts and related pages of the listed sources
13 Tribology of coatings. Handouts and related pages of the listed sources
14 Coating for optical, electronic and magnetic applications. Handouts and related pages of the listed sources
15 Guidelines on the selection of appropriate surface processing technique and coating material for a given application. Handouts and related pages of the listed sources
16 Case studies for the application of coatings. Handouts and related pages of the listed sources

Sources

Other Sources 1. “The Materials Science of Thin Films”, Milton Ohring, Academic Press; 2nd ed. (2001)
2. “Coatings Tribology, Properties, Mechanisms, Techniques and Applications in Surface Engineering”, K. Holmberg and A. Matthews, 2nd ed., Elsevier, (2009)
3. “Surface Engineering for Corrosion and Wear Resistance”, edited by J.R. Davis, ASM International, (2001)
4. “Handbook of Physical Vapor Deposition (PVD) Processing”, D.M. Mattox, William Andrew (2010)
5. “Modern Electroplating”, M. Schlesinger, Wiley, (2010)
6. “Tribology, Friction and Wear of Engineering Materials”, I.M. Hutchings, Elsevier Limited (1992)
7. “Contact Mechanics”, K. L. Johnson, Cambridge University Press, Cambridge, UK, (1987)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 10
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the Materials Engineering; the ability to apply theoretical and practical knowledge of these areas to solve complex engineering problems and to model and solve of materials systems X
2 Understanding of science and engineering principles related to the structures, properties, processing and performance of Materials systems X
3 Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose X
4 Ability to design and choose proper materials for a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design and materials selection methods for this purpose X
5 Ability to develop, select and utilize modern techniques and tools essential for the analysis and solution of complex problems in Materails Engineering applications; the ability to utilize information technologies effectively X
6 Ability to design and conduct experiments, collect data, analyse and interpret results using statistical and computational methods for complex engineering problems or research topics specific to Materials Engineering X
7 Ability to work effectively in inter/inner disciplinary teams; ability to work individually X
8 Effective oral and written communication skills in Turkish; knowlegde of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions X
9 Recognition of the need for lifelong learning; the ability to access information; follow recent developments in science and technology with continuous self-development X
10 Ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of standards used in engineering applications X
11 Knowledge on business practices such as project management, risk management and change management; awareness in entrepreneurship and innovativeness; knowledge of sustainable development X
12 Knowledge of the effects of Materials Engineering applications on the universal and social dimensions of health, environment and safety, knowledge of modern age problems reflected on engineering; awareness of legal consequences of engineering solutions X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 4 3 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 126