Statics (ME201) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Statics ME201 3. Semester 3 0 0 3 6
Pre-requisite Course(s)
PHYS101
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Özgür ASLAN
Course Assistants
Course Objectives To develop a clear understanding of the principles of rigid body mechanics, assumptions and idealizations, equilibrium and internal force concepts, related applications.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to characterize forces and moments acting upon a rigid body or a system of rigid bodies.
  • Students will be able to construct clear and concise free-body diagrams for any rigid body or system of rigid bodies.
  • Students will be able to develop equations of equilibrium from free-body diagram.
  • Students will be able to solve equations of equilibrium.
  • Students will be able to apply fundamental design concepts.
Course Content Genel tanıtım, parçacıkların statiği, rijit cisimlerin statiği, eşdeğer kuvvet sistemleri, denge, makasların analizi, kirişlerin analizi, sürtünme ve yüzeylerin geometrik özellikleri.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 General Principles Chapter 1
2 Force Vectors Chapter 2
3 Force Vectors Chapter 2
4 Equilibrium of a Particle Chapter 3
5 Force System Chapter 4
6 Force System Chapter 4
7 Equilibrium of a Rigid Body Chapter 5
8 Structural Analysis Chapter 6
9 Structural Analysis Chapter 6
10 Internal Forces Chapter 7
11 Friction Chapter 8
12 Center of Gravity and Centroid Chapter 9
13 Center of Gravity and Centroid Chapter 9
14 Moments of Inertia Chapter 10
15 Final Examination Period Review of Topics
16 Final Examination Period Review of Topics

Sources

Course Book 1. Engineering Mechanics: Statics, 12th Edition, Russell C. Hibbeler, Prentice Hall, 2010
Other Sources 2. Vector Mechanics for Engineers–Statics, 7th SI Ed., Beer F. P., Johnston E. R. and Eisenberg E. R., McGraw-Hill, 2004
3. Engineering Mechanics Statics, 6th Ed., Meriam, J. L., Kraige, L. G., John Wiley & Sons, 2008

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 8 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 60
Toplam 11 100
Percentage of Semester Work 40
Percentage of Final Work 60
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies. X
2 Analyzes and identifies problems specific to manufacturing technologies. X
3 Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments. X
4 Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability. X
5 Selects and uses modern techniques and engineering tools for manufacturing engineering applications. X
6 Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions.
7 Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills.
8 Communicates effectively in both spoken and written Turkish and English.
9 Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself.
10 Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering.
11 Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development.
12 Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 4 56
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 8 3 24
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 13 26
Prepration of Final Exams/Final Jury
Total Workload 148