Strength of Materials (ME210) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Strength of Materials ME210 4. Semester 3 1 0 3 6
Pre-requisite Course(s)
(ME201 veya ME211 veya CE201)
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Halis KANDAŞ
Course Assistants
Course Objectives To introduce students to the fundamental aspects of stress analysis and enables them to understand internal forces and moments and their relation to the internal stresses and strains within simple elements under the influence of simple loading configurations.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to calculate stress and deformation in members under axial load and torsion.
  • Students will be able to use the principles of equilibrium of forces and moments to calculate stress in members under bending.
  • Students will be able to calculate deformations in beams under bending.
Course Content Concepts of normal and shear stress, strain, axial load, statically indeterminate axially loaded members, torsion, statically indeterminate torque-loaded members, bending of beams, combined loadings, stress and strain transformation, simple loading tension, torsion and bending, deflections with simple loadings, superposition techniques.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction – Concept of Stress Lectures on Moodle Page
2 Stress and Strain – Axial Loading Lectures on Moodle Page
3 Stress and Strain – Axial Loading Lectures on Moodle Page
4 Torsion Lectures on Moodle Page
5 Torsion Lectures on Moodle Page
6 Pure Bending Lectures on Moodle Page
7 Analysis and Design of Beams for Bending Lectures on Moodle Page
8 Shearing Stresses in Beams and Thin-Walled Members Lectures on Moodle Page
9 Shearing Stresses in Beams and Thin-Walled Members Lectures on Moodle Page
10 Transformation of Stress and Strain Lectures on Moodle Page
11 Transformation of Stress and Strain Lectures on Moodle Page
12 Principal Stresses under given Loading Conditions Lectures on Moodle Page
13 Deflections of Beams Lectures on Moodle Page
14 Deflections of Beams Lectures on Moodle Page
15 Final Examination Period Lectures on Moodle Page
16 Final Examination Period Lectures on Moodle Page

Sources

Course Book 1. Lecture Notes on Moodle Page
Other Sources 2. Mechanics of Materials, 5th Edition, Ferdinand P. Beer, E. Russel Johnston, Jr., John T. DeWolf, David Mazurek, McGraw-Hill, 2009
3. Mechanics of Materials, 8/E, Russell C. Hibbeler, Prentice Hall, 2011
4. Engineering Mechanics of Solids, 2/E, Egor P. Popov, Prentice Hall, 1999

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies. X
2 Analyzes and identifies problems specific to manufacturing technologies. X
3 Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments. X
4 Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability. X
5 Selects and uses modern techniques and engineering tools for manufacturing engineering applications. X
6 Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions.
7 Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills.
8 Communicates effectively in both spoken and written Turkish and English.
9 Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself.
10 Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering.
11 Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development.
12 Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application 14 1 14
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 148