ECTS - Theory of Machines
Theory of Machines (MECE303) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Theory of Machines | MECE303 | 5. Semester | 3 | 1 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
MECE204 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | . |
Course Lecturer(s) |
|
Course Objectives | The objective of the course is to introduce the preliminary concepts of mechanisms and to present methods of analysis for the motion and force transmission in mechanisms. In this introductory course in mechanisms, basics of mechanism analysis, cams, and gear trains will be discussed. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to mechanisms: basic concepts, mobility, basic types of mechanisms; position, velocity and acceleration analysis of linkages; cam mechanisms, gear trains; static and dynamic force analysis of mechanisms. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to mechanisms and basic concepts, joint and link types, kinematic chain, degrees of freedom of mechanisms | |
2 | Four-bar linkage: Grashof's law, transmission angle, mechanical advantage, coupler curves | |
3 | Kinematic inversion, Grubler’s equation and enumeration of mechanisms | |
4 | Kinematic analysis of mechanisms, loop closure equations and their representation by vectors and complex numbers | |
5 | Position analysis of mechanisms, solution techniques for loop closure equations | |
6 | Position analysis of mechanisms, solution techniques for loop closure equations (cont’d) | |
7 | Position analysis of mechanisms, solution techniques for loop closure equations (cont’d) | |
8 | Velocity and acceleration analysis of mechanisms | |
9 | Velocity and acceleration analysis of mechanisms (cont’d) | |
10 | Cam mechanisms; analysis and design | |
11 | Gear trains, simple gear trains | |
12 | Planetary gear trains, bevel gears | |
13 | Static force analysis of mechanisms | |
14 | Dynamic force analysis of mechanisms (cont’d) | |
15 | Exam Week | |
16 | Exam Week |
Sources
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | - | - |
Final Exam/Final Jury | - | - |
Toplam | 0 | 0 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies. | X | ||||
2 | Analyzes and identifies problems specific to manufacturing technologies. | X | ||||
3 | Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments. | X | ||||
4 | Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability. | X | ||||
5 | Selects and uses modern techniques and engineering tools for manufacturing engineering applications. | X | ||||
6 | Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions. | X | ||||
7 | Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills. | |||||
8 | Communicates effectively in both spoken and written Turkish and English. | X | ||||
9 | Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself. | |||||
10 | Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering. | |||||
11 | Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development. | |||||
12 | Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | |||
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | |||
Prepration of Final Exams/Final Jury | |||
Total Workload | 0 |