Wind Energy Technologies (ENE312) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Wind Energy Technologies ENE312 Area Elective 3 1 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Aysel ATIMTAY
Course Assistants
Course Objectives To teach the fundamentals of wind and wave energy conversion systems. To introduce the basic design parameters in projecting wind turbines.
Course Learning Outcomes The students who succeeded in this course;
  • To understand the wind and wave energy
  • To understand why such energy resources are needed and utilized
  • To apply some experiments related with wind energy
  • En önemli parametrelerin kullanımı ile rüzgar türbini tasarımı
  • To discuss projecting, planning, installation and commissioning of wind turbines
  • To learn wave energy conversion systems
Course Content Wind characteristics, wind energy, wind turbines, design of wind turbines, projecting, planning and economy, wave energy and wave energy conversion systems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Physics of Wind Chapter 1
2 Wind Energy and Power Chapter 2
3 Small Turbines Chapter 3
4 Utility Scale Turbines Chapter 4
5 Electrical Components of Turbines Chapter 5
6 Aerodynamics of Wind Turbine Blades Chapter 6
7 Project Sitting Chapter 7
8 Midterm Exam
9 Wind Resource Assessment Chapter 8
10 Wind Speed and Direction Measurement Chapter 9
11 Assessment and Planning of Wind Projects Chapter 10
12 Installation and Commissioning of Wind Projects Chapter 11
13 Wind Energy Economics Chapter 12
14 Wave Energy
15 Wave Energy Conversion Systems
16 Final Exam

Sources

Course Book 1. Wind Energy Engineering, 1st Edition, Pramod Jain, 2011, Mc-Graw Hill
Other Sources 2. Ocean Energy Tide and Tidal Power, Roger H. Charlier &Charles W. Finkl, Springer, 2009
3. Wave Energy Conversion, John Brooke, Elsevier Ocean Engineering Series Volume 6, 2003.
4. Wind Energy Renewable Energy and the Environment, Vaughn Nelson, Taylor& Francis, 2009
5. Wind and Solar Power Systems: Design, Analysis, and Operation, Second Edition, Mukund R. Patel, Taylor Francis (2005)
6. Wind Energy Explained, Theory, Design and Application, J.F. Manwell, J.G. Mcgowan and A. Rogers, Wiley 2002
7. Wind Energy, Fundamentals, Resource Analysis and Economics, Sathyajith Mathew, Springer-VBH, 2006.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 10
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 4 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Applies knowledge in mathematics, science, and computing to solve engineering problems related to manufacturing technologies.
2 Analyzes and identifies problems specific to manufacturing technologies.
3 Develops an approach to solve encountered engineering problems, and designs and conducts models and experiments.
4 Designs a comprehensive manufacturing system (including method, product, or device development) based on the creative application of fundamental engineering principles, within constraints of economic viability, environmental sustainability, and manufacturability.
5 Selects and uses modern techniques and engineering tools for manufacturing engineering applications.
6 Effectively uses information technologies to collect and analyze data, think critically, interpret, and make sound decisions.
7 Works effectively as a member of multidisciplinary and intra-disciplinary teams or individually; demonstrates the confidence and necessary organizational skills.
8 Communicates effectively in both spoken and written Turkish and English.
9 Engages in lifelong learning, accesses information, keeps up with the latest developments in science and technology, and continuously renews oneself.
10 Demonstrates awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of Manufacturing Engineering.
11 Effectively utilizes resources (personnel, equipment, and costs) to enhance national competitiveness and improve manufacturing industry productivity; conducts solution-oriented project and risk management; and demonstrates awareness of entrepreneurship, innovation, and sustainable development.
12 Considers the health, environmental, social, and legal consequences of engineering practices at both global and local scales when making decisions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration 1 5 5
Project 1 15 15
Report
Homework Assignments 4 2 8
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 129