ECTS - Statistical Applications in Industrial Engineering

Statistical Applications in Industrial Engineering (IE442) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Statistical Applications in Industrial Engineering IE442 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Experiment, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course aims to prepare the student to analyze and classify data and develop empirical models for industrial engineering problems under service/production contexts. The student will be able to distinguish between different statistical techniques and implement them using a statistical software package.
Course Learning Outcomes The students who succeeded in this course;
  • Students will improve their problem solving skills and their analytical thinking ability.
  • Students will become familiar with a suitable statistical package through computer-based statistical analysis.
  • Students will learn how to collect and analyze data and use statistics to enhance their project objectives.
  • Students will learn to differentiate the common uses and misuses of statistics in business and industrial applications.
  • Students will be able to define and differentiate industrial and systems engineering problems that can be solved using statistical techniques.
Course Content Applications of simple and multiple linear regression, design and analysis of experiments, multivariate analysis and nonparametric tests for the solution of industrial engineering problems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Syllabus Introduction
2 Review of Some Statistical Topics
3 Simple Linear Regression
4 Multiple Linear Regression
5 Design and Analysis of Single Factor Experiments
6 Design and Analysis of Single Factor Experiments
7 Design of Experiments with Several Factors
8 Design of Experiments with Several Factors
9 Multivariate Statistical Analysis
10 Multivariate Statistical Analysis
11 Midterm
12 Non-parametric Tests
13 Non-parametric tests
14 Case studies and Applications
15 Final Examination Period
16 Final Examination Period

Sources

Other Sources 1. Editors, Coleman,S.,Greenfield,T.,Stewardson,D. and Montgomery,D. Statistical Practice in Business and Industry, Wiley, 2008.
3. Montgomery, D.C., and Runger, G.C., Applied Statistics and Probability for Engineers, John Wiley and Sons, Inc., 4th Edition, June 2006.
4. Czitron,V., Spagon, P.O., Statistical case studies for industrial process improvement, SIAM,1997
5. Ross, S. Introduction to Probability and Statistics for Engineers and Scientists, Academic Press, 3rd edition, 2004.
7. Schuyler,W. Reading Statistics and Research, Pearson,4th edition,2004.
9. Tabachnick, B.G. and Fidell, L.S.Using multivariate statistics, Pearson, 4th edition, 2001.
11. Editors, Tinsley, Howard E.A., Brown, S.D.Handbook of Applied Multivariate Statistics and mathematical modelling, Academic Press, 2000.
14. Allison, P. Multiple Regression: A primer, Pine Forge, 1999.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application 1 10
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 15
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 35
Toplam 9 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and relevant engineering disciplines and acquires the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Gains the ability to identify, formulate, and solve complex engineering problems and the ability to select and apply appropriate analysis and modeling methods for this purpose. X
3 Gains the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements and to apply modern design methods for this purpose.
4 Gains the ability to select and use modern techniques and tools necessary for the analysis and solution of complex engineering problems encountered in industrial engineering applications and the ability to use information technologies effectively. X
5 Gains the ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for investigating complex engineering problems or discipline specific research questions. X
6 Gains the ability to work effectively in intra-disciplinary and multi-disciplinary teams and the ability to work individually.
7 Gains the ability to communicate effectively in written and oral form, acquires proficiency in at least one foreign language, the ability to write effective reports and understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Gains awareness of the need for lifelong learning and the ability to access information, follow developments in science and technology, and to continue to educate him/herself.
9 Gains knowledge about behaviour in accordance with ethical principles, professional and ethical responsibility and standards used in industrial engineering applications
10 Gains knowledge about business practices such as project management, risk management, and change management and develops awareness of entrepreneurship, innovation, and sustainable development.
11 Gains knowledge about the global and social effects of industrial engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.
12 Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy.
13 Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory
Application 16 1 16
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 18 18
Report
Homework Assignments 5 5 25
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 3 3
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 125