ECTS - Digital Circuits and Systems
Digital Circuits and Systems (EE203) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Digital Circuits and Systems | EE203 | 3. Semester | 3 | 2 | 0 | 4 | 6 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Experiment, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The aim of the course is to provide fundamental concepts used in the analysis and design of digital circuits and systems. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Number systems and codes, Boolean algebra and logic gates, minimization of Boolean functions, combinational circuits, design of combinational circuits using SSI and MSI components, flip-flops, analysis and design of sequential circuits, counters, shift registers, memory elements, programmable logic devices (PLD), design with PLDs. Introduction to |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Number systems, conversion between binary, decimal, octal, hexadecimal systems, negative number representations | |
2 | Boolean algebra, Boolean functions, logic gates, propagation delay, hazards, glitches | Read your course notes |
3 | Canonical and standard forms Lab. Experiment: Construction of simple combinational circuits | Read your experiment manual carefully |
4 | Minimization of Boolean functions, 3 and 4 variable Karnaugh map method, NAND and NOR implementations, don’t care conditions | Read the related material from your book |
5 | Minimization of Boolean functions, 3 and 4 variable Karnaugh map method, NAND and NOR implementations, don’t care conditions | Read the related material from your book |
6 | Binary adder, subtractor, decimal adder, ripple adder | |
7 | Definition of encoders and decoders, cascading decoders, definition of multiplexers and demultiplexers, expanding multiplexers. Combinational Programmable Logic Devices (PAL, PLA, GAL) Lab. Experiment: 4-bit ripple adder, usage of oscilloscope with logic channels, delay measurements | Review your lecture notes and read your experiment manual |
8 | Definition of D-latch, D-flip-flop, JK-flip-flop, T-flip-flop, master-slave configuration. Asynchronous preset and clear inputs. Analysis of synchronous sequential circuits with D-flip-flops. Finding characteristic tables, state tables and state diagrams | |
9 | Definition of D-latch, D-flip-flop, JK-flip-flop, T-flip-flop, master-slave configuration. Asynchronous preset and clear inputs. Analysis of synchronous sequential circuits with D-flip-flops. Finding characteristic tables, state tables and state diagrams | Read the related parts from your book |
10 | Design of synchronous sequential circuits with D-flip-flops | |
11 | Finite state machines and design examples | Study on the problems in the book |
12 | Ripple counter and its disadvantages, synchronous serial and parallel counters, MSI counters, shift registers. Lab. Experiment: Flip-flops and MSI counter circuits | Review your course notes |
13 | Introduction to memory devices: ROM, RAM, CPLDs and FPGAs | Read from your book |
14 | Verilog hardware description language, structural and behavioral description of combinational circuits with Verilog | Research the topic on the Internet |
15 | Final examination period | Review of topics |
16 | Final examination period | Review of topics |
Sources
Course Book | 1. Digital Design, Author: M. Morris Mano, 5th Edition, Pearson |
---|---|
2. Digital Design, Principles and Practices, Author: John F. Wakerly, Pearson International Edition, 4th Edition. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 14 | 5 |
Laboratory | 5 | 15 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 22 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Possesses sufficient knowledge in mathematics, natural sciences, and discipline-specific topics in Electrical and Electronics Engineering; uses this theoretical and practical knowledge to solve complex engineering problems. | X | ||||
2 | Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analytical and modeling methods for this purpose. | X | ||||
3 | Designs complex systems, processes, devices, or products under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, depending on the nature of the design.) | X | ||||
4 | Selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; effectively uses information technologies. | X | ||||
5 | Designs experiments, conducts tests, collects data, analyzes, and interprets results to investigate complex engineering problems or discipline-specific research topics. | X | ||||
6 | Works effectively in disciplinary and interdisciplinary teams; develops the ability to work independently. | X | ||||
7 | Communicates effectively in both written and verbal forms; possesses proficiency in at least one foreign language; writes effective reports, understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear instructions. | X | ||||
8 | Recognizes the need for lifelong learning; accesses information, follows developments in science and technology, and continuously renews oneself. | X | ||||
9 | Acts in accordance with ethical principles, assumes professional and ethical responsibility, and possesses knowledge about the standards used in engineering practices. | X | ||||
10 | Possesses knowledge about professional practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; understands the principles of sustainable development. | X | ||||
11 | Understands the universal and societal impacts of engineering practices on health, environment, and safety; recognizes the contemporary issues reflected in the field of engineering and understands the legal implications of engineering solutions. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | 5 | 1 | 5 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 4 | 64 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 4 | 3 | 12 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 8 | 16 |
Prepration of Final Exams/Final Jury | 1 | 8 | 8 |
Total Workload | 153 |