ECTS - Engineering Design Project I

Engineering Design Project I (EE493) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Engineering Design Project I EE493 0 4 0 2 9
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Mix
Learning and Teaching Strategies Drill and Practice, Problem Solving, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Sedat SÜNTER
  • Prof. Dr. Elif AYDIN
  • Assoc. Prof. Dr. Yaser DALVEREN
Course Assistants
Course Objectives - to apply knowledge acquired from the courses of the undergraduate curriculum to the solution of an engineering design problem. - to gain familiarity with available technical literature. - to apply analytical and synthetical design methodology to solve an engineering design problem. - to test and evaluate proposed method of solution to the engineering design problem. - to make the students able to generate alternative solutions and select among them. - to make the students able to write a technical report describing an engineering problem and its proposed solution. - to improve oral and written communications skills. - to give the students an ability for effective organizational project management.
Course Learning Outcomes The students who succeeded in this course;
Course Content Individual design projects in various areas of electrical and electronics engineering.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 3 100
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 3 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems. X
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this. X
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this. X
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively X
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics. X
6 An ability to function on multi-disciplinary teams, and ability of individual working. X
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions. X
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated. X
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications. X
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development. X
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application 14 4 56
Special Course Internship
Field Work
Study Hours Out of Class 16 10 160
Presentation/Seminar Prepration 3 5 15
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 231