ECTS - Introduction to the History of Philosophy

Introduction to the History of Philosophy (HUM321) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to the History of Philosophy HUM321 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Staff
Course Assistants
Course Objectives The course aims at providing students with comprehensive background knowledge in the history of Philosophy, covering a wide span from Ancient Greece to the modern era.
Course Learning Outcomes The students who succeeded in this course;
  • Furnished with knowledge on the basic philosophical movements and the views of the most outstanding philosophers in the History of Philosophy,
  • Learn thinking critically,
  • Becoming familiar to relate ideas and phenomena to one another.
Course Content A study of selected philosophers from the times of Ancient, Medieval and Modern Philosophy, 19th Century Philosophy and 20th Century Philosophy.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction. Ancient Philosophy: A brief study of Thales, Anaximander and Anaximenes Recommended throughout the course
2 A brief study of Pythagoras, Heraclitus
3 The Sophists, Socrates
4 Plato
5 Aristotle
6 The Stoics, the Skeptics, Plotinus
7 Medieval Philosophy: St. Augustine Midterm
8 Thomas Aquinas
9 Modern Philosophy: René Descartes
10 Baruch Spinoza, David Hume
11 Hume continued
12 Nineteenth Century Philosophy: Friedrich Nietzsche
13 Twentieth Century Philosophy: Edmund Husserl
14 Jean-Paul Sartre, Simone de Beauvoir
15 Review
16 Final Examination

Sources

Course Book 1. Stumpf, Samuel Enoch. Socrates to Sartre: A History of Philosophy (New York: McGraw-Hill Book Company, 1996).

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 5
Presentation 1 10
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 4 85
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems.
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this.
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this.
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics.
6 An ability to function on multi-disciplinary teams, and ability of individual working.
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated. X
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications.
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development.
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 1 10 10
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 3 15
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 98