ECTS - Power Transmission and Distribution
Power Transmission and Distribution (ENE403) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Power Transmission and Distribution | ENE403 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Project Design/Management. |
Course Lecturer(s) |
|
Course Objectives | • To introduce the basic principles of power transmission and distribution • Describe conventional methods of electrical power generation. • Describe different parts of a power supply system. • Identify different parts of electrical power transmission and distribution systems and explain their functions • Suggest methods for power factor improvement • To design a transmission and distribution electric power system |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Basics of electric power system theory, electric power transmission, electric power transmission model, distribution systems and planning, lightining protection, grounding and safety, distributed generation. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction | Chapter 1 |
2 | Introduction | Chapter 1 |
3 | Transmission Line Parameters | Chapter 2 |
4 | Transmission Line Parameters | Chapter 3 |
5 | Transmission Line Parameters | Chapter 3 |
6 | Transmission Line Parameters | Chapter 3 |
7 | Modelling and Performance of Transmission Lines | Chapter 4 |
8 | Modelling and Performance of Transmission Lines | Chapter 5 |
9 | Modelling and Performance of Transmission Lines | Chapter 6 |
10 | Modelling and Performance of Transmission Lines | Chapter 6 |
11 | Midterm Exam | |
12 | Insulators and Cables | Chapter 7 |
13 | Insulators and Cables | Chapter 7 |
14 | Mechanical Design of Lines and Grounding | Chapter 8 |
15 | Mechanical Design of Lines and Grounding | Chapter 9 |
16 | Final Exam |
Sources
Course Book | 1. C.L.Wadhwa, ‘Electrical Power Systems’, New Age International Pvt., Ltd., 2007 |
---|---|
2. D.P.Kothari , I.J. Nagarath, ‘Power System Engineering’,Tata McGraw-Hill Publishing Company limited, New Delhi, 2007. | |
3. Transmission and distribution electrical engineering : By Colin Bayliss , second edition , Butterworth- Heinemann Ltd. ISBN: 0-7506-4059-6 | |
Other Sources | 4. B.R.Gupta, ‘Power System Analysis and Design’, S.Chand, New Delhi, 2013. |
5. S.N. Singh, ‘Electric Power Generation, Transmission and Distribution’, Prentice Hall of India Pvt. Ltd, New Delhi, 2012. | |
6. Luces M.Fualkenberry ,Walter Coffer, ‘Electrical Power Distribution and Transmission’, Pearson Education, 2016. | |
7. Hadi Saadat, ‘Power System Analysis,’ Tata McGraw Hill Publishing Company’, 2003. | |
8. J.Brian, Hardy and Colin R.Bayliss ‘Transmission and Distribution in Electrical Engineering’ |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 45 |
Final Exam/Final Jury | 1 | 50 |
Toplam | 3 | 100 |
Percentage of Semester Work | 40 |
---|---|
Percentage of Final Work | 60 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Possesses sufficient knowledge in mathematics, natural sciences, and discipline-specific topics in Electrical and Electronics Engineering; uses this theoretical and practical knowledge to solve complex engineering problems. | |||||
2 | Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analytical and modeling methods for this purpose. | |||||
3 | Designs complex systems, processes, devices, or products under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, depending on the nature of the design.) | |||||
4 | Selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; effectively uses information technologies. | |||||
5 | Designs experiments, conducts tests, collects data, analyzes, and interprets results to investigate complex engineering problems or discipline-specific research topics. | |||||
6 | Works effectively in disciplinary and interdisciplinary teams; develops the ability to work independently. | |||||
7 | Communicates effectively in both written and verbal forms; possesses proficiency in at least one foreign language; writes effective reports, understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear instructions. | |||||
8 | Recognizes the need for lifelong learning; accesses information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, assumes professional and ethical responsibility, and possesses knowledge about the standards used in engineering practices. | |||||
10 | Possesses knowledge about professional practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; understands the principles of sustainable development. | |||||
11 | Understands the universal and societal impacts of engineering practices on health, environment, and safety; recognizes the contemporary issues reflected in the field of engineering and understands the legal implications of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 15 | 15 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 126 |