Stage Makeup (ART298) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Stage Makeup ART298 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course aims to enable students to acquire fundamental skills for theatrical makeup, which is used to visually enchance characters on the stage. By definition, theatrical makeup is more colorful and graphic compared to cosmetic makeup.
Course Learning Outcomes The students who succeeded in this course;
  • - Acquire relevant historical knowledge,
  • - Comprehend color theory,
  • - Learn how to use makeup tools by observing makeup sanitation processes,
  • - Understand implications of light and shadow for stage makeup,
  • - Apply mask making and trauma makeup techniques.
Course Content In line with the course objective and expected learning outcomes, the course will expose students to various aspects of theatrical makeup application for stage, such as historical context, products, tools and techniques.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 History of Makeup
2 History of Makeup
3 Hygiene, Sanitation, and Chemicals
4 Facial Anatomy
5 Mask history and Mask Making Practice
6 Color Theory of Makeup and Practice
7 Midterm
8 Light and Shadow
9 Project
10 Trauma Makeup
11 Trauma Makeup
12 Trauma Makeup
13 Corrective Makeup and Old Age Make up
14 Corrective Makeup and Old Age Make up
15 Seminar
16 Final Evaluation

Sources

Other Sources 1. Debreceni, T. (2013). Special Makeup Effects for Stage and Screen. Making and Applying Prosthetics. New York: Routledge.
2. Townsend, D. (2019). Foundations of Stage Makeup. New York: Routledge.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 2 20
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 10
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 21 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Possesses sufficient knowledge in mathematics, natural sciences, and discipline-specific topics in Electrical and Electronics Engineering; uses this theoretical and practical knowledge to solve complex engineering problems.
2 Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analytical and modeling methods for this purpose.
3 Designs complex systems, processes, devices, or products under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, depending on the nature of the design.)
4 Selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; effectively uses information technologies.
5 Designs experiments, conducts tests, collects data, analyzes, and interprets results to investigate complex engineering problems or discipline-specific research topics.
6 Works effectively in disciplinary and interdisciplinary teams; develops the ability to work independently.
7 Communicates effectively in both written and verbal forms; possesses proficiency in at least one foreign language; writes effective reports, understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear instructions.
8 Recognizes the need for lifelong learning; accesses information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, assumes professional and ethical responsibility, and possesses knowledge about the standards used in engineering practices.
10 Possesses knowledge about professional practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; understands the principles of sustainable development.
11 Understands the universal and societal impacts of engineering practices on health, environment, and safety; recognizes the contemporary issues reflected in the field of engineering and understands the legal implications of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 2 5 10
Special Course Internship
Field Work
Study Hours Out of Class 2 3 6
Presentation/Seminar Prepration 1 8 8
Project 1 8 8
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 100