ECTS - Occupational Health and Safety

Occupational Health and Safety (IE443) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Occupational Health and Safety IE443 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Team/Group.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course provides Occupational health and safety legislations, inform basic principles of occupational health and safety, educate individuals who will generate analytical solutions and perform these solutions at site , protect employees health and working conditions and provide advices on this issue.
Course Learning Outcomes The students who succeeded in this course;
  • Students will acquire a broad practical knowledge of occupational health and safety.
  • Students will generate analytical solutions for occupational health and safety issues at their business life.
  • Student will overlook on national health and safety legislations.
  • Student will gain the knowledge to take proactive approaches by perspective of occupational health and safety.
Course Content Basic information on occupational health and safety, principles and legislations, occupational health and safety requirements to be applied in the workplace, occupational accidents, risk assessment and occupational audits; a proactive approach to occupational health and safety.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Basic Principles of Occupational Health and Safety
2 Occupational Health and Safety Legislation
3 Occupational Health and Safety Legislation
4 Risk Factors / Physical, Chemical, Biological, Ergonomic, Electrical, Psychosocial
5 Ergonomics
6 Work accident and occupational disease management
7 Midterm
8 Health and Safety Education Management
9 Risk Assessment Management
10 Risk Assessment Methods
11 Emergency Management
12 Accident Investigation, Inspection and Safety System
13 Occupational Health and Safety Audit Management
14 ISO 45001 Management System
15
16 General discussion

Sources

Course Book 1. [1] Phil Hughes, Ed Ferrett, Introduction Health And Safety At Work, Elsevier, 2005.
2. [2] John RIDLEY, Health And Safety in Brief, Elsevier, 2008.
3. [3] AC van der VYVER, Risk Management in The Mining Industry, University of Pretoria, 2011
4. [4] Occupational Health and Safety Law No. 6331 and Regulations

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Possesses sufficient knowledge in mathematics, natural sciences, and discipline-specific topics in Electrical and Electronics Engineering; uses this theoretical and practical knowledge to solve complex engineering problems.
2 Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analytical and modeling methods for this purpose.
3 Designs complex systems, processes, devices, or products under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, depending on the nature of the design.)
4 Selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; effectively uses information technologies.
5 Designs experiments, conducts tests, collects data, analyzes, and interprets results to investigate complex engineering problems or discipline-specific research topics.
6 Works effectively in disciplinary and interdisciplinary teams; develops the ability to work independently. X
7 Communicates effectively in both written and verbal forms; possesses proficiency in at least one foreign language; writes effective reports, understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear instructions.
8 Recognizes the need for lifelong learning; accesses information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, assumes professional and ethical responsibility, and possesses knowledge about the standards used in engineering practices.
10 Possesses knowledge about professional practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; understands the principles of sustainable development.
11 Understands the universal and societal impacts of engineering practices on health, environment, and safety; recognizes the contemporary issues reflected in the field of engineering and understands the legal implications of engineering solutions. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 7 7
Prepration of Final Exams/Final Jury 1 7 7
Total Workload 125