ECTS - 3D Modeling, Animation and Game Design
3D Modeling, Animation and Game Design (SE375) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
3D Modeling, Animation and Game Design | SE375 | Area Elective | 2 | 2 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The aim of this course is to provide students with technical background and ability to develop 3D modeling and animations, controlled by peripheral computer devices which will be a base for computer game development. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to modeling bases, an overview of the design of the model, selection of the appropriate modeling technique; transforming the model into simulation and animation; overview of simulation and physics engine; control of model and animation with peripherals; overview of peripherals; interactive project construction with the selection of appropriate peripherals; 3D modeling for 3D printers; artificial organ design with 3D printers; industrial product design with 3D printers; |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Course introduction, description of course, interface description of 3D program. | Installation of the 3D program and performance settings. |
2 | Introduction to polygon modeling, examination of polygon sub-objects and a simple model. | Investigation of expressing physical objects in polygon forms. |
3 | The use of a physics engine with a simple polygon model simulation. Physics engine description. | Transformation of 3D models to rigid bodies, investigation of mass and gravitational forces, and investigation of friction and air resistance phenomena. |
4 | Simulation is transformed into animation. Expression of basic animation concepts. | Examination of the moment of an event under physics forces, investigation of its virtual animation. |
5 | Application of solid model deformation as animation. | Investigating the Morph modify command for rigid body modeling. |
6 | 3D character and 3D environment design for computer games. | Investigation of low polygon game object and environmental design applications. |
7 | Motion capture for computer games and a simple virtual reality application. | Examination of application areas of motion capture. Investigation of virtual glasses. |
8 | (MIDTERM) AN INTERACTIVE ANIMATION DESIGN | |
9 | A simple interactive game with sensors and interactive animation application. | Inspection of distance sensors (ultrasound and infrared). Investigation of arduino microcontroller input-output (GPIO) doors. Programming knowledge for microcontroller systems (Processing, C ++, JavaScript etc.) |
10 | Introduction of environmental units, introduction of simulation and animations with environmental units. | Search for game controllers, virtual glasses, sensors and microcontrollers (Arduino, PIC Micro, etc.). Programming knowledge for microcontroller systems (Processing, C ++, JavaScript etc.) |
11 | Artificial organ modeling animation for 3D printer and creation on 3D printer. | Investigation of mechanical hand and robot arm applications as artificial organ. |
12 | Industrial product design for 3D printer, 3D product modeling. | Investigate appropriate industrial products that can be extracted from a 3D printer. |
13 | A simple wearable technology application with 3D printer. | Investigation of wearable technologies, determination of sources. Programming knowledge for microcontroller systems (Processing, C ++, JavaScript etc.) |
14 | An artistic work with the 3D printer, and it’s Interactive interaction. | Investigation of kinetic sculpture applications. Programming knowledge for microcontroller systems (Processing, C ++, JavaScript etc.) |
15 | Beginning the projects with the determination of the project at the end of the term. | To exchange ideas for projects and to determine resources by searching appropriate areas. |
16 | (FINAL) - With jury - PROJECT PRESENTATION |
Sources
Course Book | 1. Autodesk 3ds Max 2016 Essentials: Autodesk Official Press by Dariush Derakhshani(Author),Randi L. Derakhshani(Author), ISBN : 978-1-119-05976-9, John Wiley & Sons, Inc., Indianapolis, Indiana, 23 Oct 2015 |
---|---|
Other Sources | 2. Getting Started with Arduino (Make: Projects), Massimo Manzi (Co-founder of Arduino), ISBN : 978-0-596-15551-3,O’REILLY,2009 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | 1 | 25 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 35 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Possesses sufficient knowledge in mathematics, natural sciences, and discipline-specific topics in Electrical and Electronics Engineering; uses this theoretical and practical knowledge to solve complex engineering problems. | |||||
2 | Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analytical and modeling methods for this purpose. | |||||
3 | Designs complex systems, processes, devices, or products under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, depending on the nature of the design.) | X | ||||
4 | Selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; effectively uses information technologies. | |||||
5 | Designs experiments, conducts tests, collects data, analyzes, and interprets results to investigate complex engineering problems or discipline-specific research topics. | |||||
6 | Works effectively in disciplinary and interdisciplinary teams; develops the ability to work independently. | X | ||||
7 | Communicates effectively in both written and verbal forms; possesses proficiency in at least one foreign language; writes effective reports, understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear instructions. | |||||
8 | Recognizes the need for lifelong learning; accesses information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, assumes professional and ethical responsibility, and possesses knowledge about the standards used in engineering practices. | |||||
10 | Possesses knowledge about professional practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; understands the principles of sustainable development. | |||||
11 | Understands the universal and societal impacts of engineering practices on health, environment, and safety; recognizes the contemporary issues reflected in the field of engineering and understands the legal implications of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 12 | 2 | 24 |
Presentation/Seminar Prepration | |||
Project | 4 | 5 | 20 |
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 15 | 15 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 127 |