ECTS - Technology Management
Technology Management (IE445) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Technology Management | IE445 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer, Team/Group. |
Course Lecturer(s) |
|
Course Objectives | The objective of this course is to introduce life cycles of technology, product, process and system to catalyze R&D. To generate more science from existing science and more technology from existing technology is targeted. Tools for national defense, national development and economic growth by resolving to make a country a self-reliant, strong and technology developed country is discussed. Technology management problems encountered in professional careers is identified. Also Globalization is discussed including the course themes mentioned below. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | The topics covered a) identifying the strategic issues in technology management (TM); b) identifying the issues in organizing TM functions and related human element ; c) identifying the issues in TM-Activities and Tools d) being able to identify, formulate and solve TM problems. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | First meeting - Syllabus introduction | |
2 | Definition of Technology and Management. Global economic power ot the countries. How companies manage technology. | |
3 | TM Framework and TM Activities. | |
4 | TM Tools. | |
5 | Evolution of technology. The role of technology in globalization. | |
6 | Trends, new jobs and new skills. | |
7 | Transformation of Soceities. | |
8 | Nationalizm vs Globalism. The role of the Multi National Companies. | |
9 | Midterm | |
10 | Globalization of technology. | |
11 | Global flows and barriers. Trends in international technological cooperation. | |
12 | Applications of information technologies. | |
13 | Globalization of Industry Through Production Sharing | |
14 | Improving the Quality of Life Through Technology | |
15 | Defense industry background. Globalization 4.0. How Technology is Driving Toward Peak Globalization | |
16 | Final Exam |
Sources
Course Book | 1. Technology Management: Activities and Tools, D. Cetindamar, R. Phaal, D. Probert. PalgraveMacmillan NewYork, NY(2010). |
---|---|
Other Sources | 2. A- Engineering and Technology Management Tools and Applications, B.S. Dhillon Artech House Boston, London |
3. B-Technology management as a profession and the challenges ahead Dilek Cetindamar, Robert Phaalb, David R. Probertb a, Journal of Engineering and Technology, J. Eng. Technol. Manage. 41 (2016) 1–13 | |
4. C- Understanding technology management as a dynamic capability: A framework for technology management activities Dilek Cetindamar, Robert Phaalb, David Probert, Science Direct, Technovation 29 (2009) 237-246 | |
5. D – The Technology Management Handbook Editor in Chief Richard C. Dorf, CRC Press LLC, 1999 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | 1 | 5 |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 4 | 90 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Possesses sufficient knowledge in mathematics, natural sciences, and discipline-specific topics in Electrical and Electronics Engineering; uses this theoretical and practical knowledge to solve complex engineering problems. | |||||
2 | Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analytical and modeling methods for this purpose. | |||||
3 | Designs complex systems, processes, devices, or products under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, depending on the nature of the design.) | |||||
4 | Selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; effectively uses information technologies. | |||||
5 | Designs experiments, conducts tests, collects data, analyzes, and interprets results to investigate complex engineering problems or discipline-specific research topics. | |||||
6 | Works effectively in disciplinary and interdisciplinary teams; develops the ability to work independently. | X | ||||
7 | Communicates effectively in both written and verbal forms; possesses proficiency in at least one foreign language; writes effective reports, understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear instructions. | |||||
8 | Recognizes the need for lifelong learning; accesses information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, assumes professional and ethical responsibility, and possesses knowledge about the standards used in engineering practices. | |||||
10 | Possesses knowledge about professional practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; understands the principles of sustainable development. | X | ||||
11 | Understands the universal and societal impacts of engineering practices on health, environment, and safety; recognizes the contemporary issues reflected in the field of engineering and understands the legal implications of engineering solutions. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | 1 | 4 | 4 |
Project | 1 | 20 | 20 |
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 125 |