Pre-Stress Engineering (MFGE560) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Pre-Stress Engineering MFGE560 3 0 0 3 5
Pre-requisite Course(s)
MFGE- 205
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Caner Şimşir
Course Assistants
Course Objectives Firstly, this course aims to acquaint the students with the concept of residual stresses, measurement techniques, their origin depending on the manufacturing method, their effects on succeeding manufacturing steps, service performance and failure. Secondly, the methods for controlling and intentional imposition of residual stresses (pre-stress engineering) to improve properties and life time of the component will be discussed.
Course Learning Outcomes The students who succeeded in this course;
  • Students will develop an understanding of residual stresses as well as their origin depending on the production method.
  • Students will get acquainted with the residual stress measurement techniques.
  • Students will have hands-on-touch experience during laboratory sessions where residual stress measurements are conducted.
Course Content Residual stresses, measurement techniques, effect of residual stresses, residual stress control, pre-stressing techniques.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Residual Stresses and Pre-stress Engineering
2 Introduction to Residual Stresses and Pre-stress Engineering
3 Introduction to Residual Stresses and Pre-stress Engineering
4 Material Factors Residual Stresses
5 Material Factors Residual Stresses
6 Measurement of Residual Stresses
7 Residual Stresses Development in Manufacturing Steps
8 Residual Stresses Development in Manufacturing Steps
9 Residual Stresses Development in Manufacturing Steps
10 Residual Stresses Development in Manufacturing Steps
11 Methods for Controlling Residual Stresses
12 Methods for Controlling Residual Stresses
13 Pre-Stressing Techniques and Case-Studies
14 Pre-Stressing Techniques and Case-Studies
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. Totten, G.E., Howes. M., Inoue, T., Handbook of Residual Stress and Deformation of Steel, ASM International , ISNBN 0871707292, Ohio, 2002
Other Sources 2. Gür, C.H., Pan , J., Handbook of Thermal Process Simulation of Steels, CRC Press, Taylor & Francis Inc., ISBN 9780849350191, 2008 [3]
3. Youtsos, A., Residual Stress and Its Effects on Fatigue and Fracture, Springer Verlag, ISBN 978-1-4020-5328-3, 2006

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 5 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 25
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 35
Final Exam/Final Jury 1 35
Toplam 13 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application 14 2 28
Special Course Internship
Field Work
Study Hours Out of Class 16 6 96
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 124