Surfaces and Interfaces (MFGE561) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Surfaces and Interfaces MFGE561 3 0 0 3 5
Pre-requisite Course(s)
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Cemal Merih Şengönül
Course Assistants
Course Objectives This course aims to acquaint the students with surface, near surface and interface phenomenon since many everyday situations concerning manufacturing engineering are very much dependent on interfacial processes.
Course Learning Outcomes The students who succeeded in this course;
  • Students will develop an understanding of interfaces, its thermodynamics and the forces involved in their formation.
  • Students will get acquainted with solid surface energies, adsorption isotherms, liquid solid interfaces, wetting
  • Students will attain knowledge of surface roughness, and cleaning processes.
  • Students will cultivate understanding of surface wear and friction.
  • Students will learn plating, vapor coating as well as organic coating processes.
Course Content Interfacial forces, thermodynamics of interface, study of solid surfaces, interfaces between liquid and solid, surface cleaning methods, surface wear, plating and coating methods, marine biofouling, advances in anti-fouling marine and biomaterial surfaces, smart surfaces.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Interfacial Forces
2 Thermodynamic description of an Interface
3 The description of solid surfaces, surface free energy, surface tension, surface imperfections, surface roughness
4 The description of solid surfaces, surface free energy, surface tension, surface imperfections, surface roughness
5 Interface between a liquid and a solid, wetting and capillarity
6 Industrial surface cleaning processes
7 Surface wear, friction and characterization
8 Surface wear, friction and characterization
9 Plating and related processes
10 Vapor deposition processes
11 Vapor deposition processes
12 Organic coatings, adsorption and surface active species
13 Marine and biomaterial anti-fouling coatings, smart (functional) surfaces
14 Marine and biomaterial anti-fouling coatings, smart (functional) surfaces
15 Final Examination Period
16 Final Examination Period


Course Book 1. Surface Coatings for protection against wear, B. G. Mellor, Woodhead Publishing limited, 2006
2. Chemisty of Interfaces, M. J. Jaycock, G.D. Parfitt, Ellis Horwood Limited, 1981
3. Physics and Chemistry of Interfaces, Hans-Jürgen Butt, Karlheinz Graf, Michael Kappl, Wiley-VCH, 2006
Other Sources 4. Principles of Modern Manufacturing, Mikell P. Groover, John Wiley and Sons, 2011
5. Advances in marine anti-fouling coatings and technologies, Claire Hellio, Diego Yebra, Woodhead Publishing, 2009

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 30
Toplam 4 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Application 16 2 32
Special Course Internship
Field Work
Study Hours Out of Class 16 5 80
Presentation/Seminar Prepration
Homework Assignments 1 40 40
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 167