Theory of Plasticity (MDES683) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Plasticity MDES683 3 0 0 3 5
Pre-requisite Course(s)
Consent of the instrutor
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The students, through this course, will master the principles of plastic deformation of solids, mainly metals. The course will introduce the students with the continuum aspects of plastic deformation; yet the micromechanics will be out of scope.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to solve plastic deformation problems in continuum sense. Students will be competitive in the field of mechanics of materials, more generally in plastic deformation. Students will have insight to major processes of metal forming, and will learn how to formulate the flow in such processes.
Course Content Vector and tensor calculus; general concepts about mechanics of materials-stress and strain concept; continuum deformation: displacement, strain and compatibility conditions; mechanics of continuous bodies: stress and stress equation of motion; elastic constitutive relations; inelastic constitutive relations; yield criteria, flow rules and hardenin

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Indicial notation, vector and tensor calculus, coordinate transformations, curvilinear coordinates Related pages of the textbook and other sources
2 Displacement, deformation gradient, Strain, strain rate, strain and strain rate tensors Related pages of the textbook and other sources
3 Principal strains, compatibility conditions Related pages of the textbook and other sources
4 Stress, Mohr's circle, definitions of stress tensors, Stress equations of motions as boundary value problems Related pages of the textbook and other sources
5 Elastic constitutive relations Related pages of the textbook and other sources
6 Plastic deformation - constitutive relations Related pages of the textbook and other sources
7 Yield criteria, flow rules and hardening rules Related pages of the textbook and other sources
8 Yield criteria, flow rules and hardening rules Related pages of the textbook and other sources
9 Rate independent plasticity Related pages of the textbook and other sources
10 Viscoplasticity Related pages of the textbook and other sources
11 Uniqueness and Extremum Theorems, Related pages of the textbook and other sources
12 Limit-analysis and Shakedown Theorems Related pages of the textbook and other sources
13 Crystal plasticity and anisotropic hardening models Related pages of the textbook and other sources
14 Large deformation plasticity Related pages of the textbook and other sources
15 Overall review -
16 Final exam -

Sources

Course Book 1. Davies, D. W. A., Basic Engineering Plasticity, Butterworth & Heinemann, (2006).
Other Sources 2. Prager, W., An Introduction to Plasticity, Addison Wesley, (2002).
3. Lubliner, J., Plasticity Theory, Dover, (2008)
4. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, (1998)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 5 5
Homework Assignments 5 40
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 13 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 5 25
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 131