Advanced Fluid Mechanics (ME621) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Fluid Mechanics ME621 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is a survey of principal concepts and methods of fluid dynamics.
Course Learning Outcomes The students who succeeded in this course;
  • Understanding of the basic characteristics of fluid motion. Learning and applications of methods used to solve flow problems. Interpreting the results of solution of flow problems.
Course Content This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy, equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Basic Laws:Conservation of Mass, Momentum, and Energy
2 Newton’s Second Law, The First Law of Thermodynamics.
3 Principal concepts and methods of fluid dynamics.
4 Constitutive Relations of Viscous Flows
5 Analysis of Viscous Flows
6 Kinematics of Flow: Streamline, Pathline, Streakline and Timeline, Vortex, Circulation
7 Inviscid Flow
8 Similarity and dimensional analysis
9 Lubrication theory
10 Boundary layers and separation
11 Circulation and vorticity theorems
12 Potential flow
13 Introduction to turbulence
14 Lift and drag; surface tension and surface tension driven flows.

Sources

Course Book 1. 1. White, F. M., Viscous Fluid Flow. McGraw-Hill Book Company.
2. 2. Schlichting, H., Boundary Layer Theory. McGraw-Hill Book Company.
3. 3. Exerpts from Graebel: "Advanced fluid mechanics" Academic Press 2006.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 2 10 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 14 28
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 110