Theory of Plasticity (ME667) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Plasticity ME667 3 0 0 3 5
Pre-requisite Course(s)
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course aims at a better understanding and formulation of plastic deformation of metals. It also discusses the role of microstructure and thermodynamics in plastic deformation. Different rules and models are discussed in details together with their mathematical representation including Maximum dissipation and normality rule, hardening rules, Non-associated flow rules. Slip line theory is discussed.
Course Learning Outcomes The students who succeeded in this course;
  • Mathematical preliminaries; stress and strain; constitutive responses; physics of plasticity; application of plasticity theory for different materials; Formulation of rate-independent plasticity; maximum dissipation postulate; yield criteria; flow rules and hardening rules; uniqueness theorems; extremum principles in plasticity; limit analysis; shakedown theorems; plane problems in plasticity; slip line theory and its applications; plastic stability; plastic buckling; global and local criteria of plastic stability; strain localization and shear bands; dynamic plasticity
Course Content Vector and tensor calculus; general concepts about mechanics of materials - stress and strain concept; continuum deformation: displacement, strain and compatibility conditions; mechanics of continuous bodies: stress and stress equation of motion; elastic constitutive relations; inelastic constitutive relations; yield criteria, flow rules and hardening.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introductory Concepts in Plasticity
2 On the role of microstructure and thermodynamics in plastic deformation
3 Constitutive responses: elastic, viscoelastic, plastic, viscoplastic, anisotropy, etc.
4 Rate dependent and rate independent plasticity
5 Plastic strain, incremental strain, and hardening variables
6 Yield criteria
7 Maximum dissipation and normality rule (Associated flow rules)
8 Hardening rules (isotropic and kinematic)
9 Non-associated flow rules
10 Uniqueness theorems and variational principles in plasticity
11 Basic equations of plane strain and plane stress Slip lines and their properties
12 Solution to several problems (such as indentation, necking, drawing, etc)
13 The concept of plastic stability
14 Dynamic plasticity


Course Book 1. Chakrabarty, Jagabanduhu. Theory of plasticity. Butterworth-Heinemann, 2012
Other Sources 2. Hill, Rodney. The mathematical theory of plasticity. Vol. 11. Oxford university press, 1998. Batdorf, So Bo, and Bernard Budiansky. "A mathematical theory of plasticity based on the concept of slip." (1949).

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 4 10
Homework Assignments 4 20
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 11 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Homework Assignments 4 4 16
Quizzes/Studio Critics 3 3 9
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 107