ECTS - Polymer Processing
Polymer Processing (ME421) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Polymer Processing | ME421 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | |
Learning and Teaching Strategies | . |
Course Lecturer(s) |
|
Course Objectives | |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to hydrocarbons and macromolecular structures, homopolymers, copolymers, elastomers, blends and thermosets, morphology of polymers, semicrystalline and amorhous states, polymer additives, mechanical properties, differential scanning calorimetry and dilatometry, rheological properties, non Newtonian flow, viscoelasticity, melt flow index and rheometers, melting and mixing; die forming, extrusion based processes, molding processes, manufacture of tires and other rubber products. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to polymer morphology, architecture and behavior | Chapter 1 |
2 | Polymer synthesis and bonding in polymers | Chapter 2 |
3 | Characterization of molecular weights | Chapter 3 |
4 | Morphology of Polymers, crsytalization and amorphous structure | Chapter 4 |
5 | Thermodynamic transitions in Polymers | Chapter 5 |
6 | Mechanical Properties | Chapter 6 |
7 | Rubber elasticity | Chapter 7 |
8 | Pure viscous flow and newtonian behavior | Chapter 8 |
9 | Viscoelasticity and Non-newtonian flows | Chapter 9 |
10 | Polymer Rheology | Chapter 11 |
11 | Extrusion | Chapter 11 |
12 | Molding processes: Injection, blow molding, etc. | Chapter 12 |
13 | Other polymer shaping operations | Chapter 13 |
14 | Rubber production and vulcanization | Chapter 14 |
15 | Final exam period | All Chapters |
16 | Final Exam Period | All Chapters |
Sources
Course Book | 1. Fundamental Principles of Polymeric Materials (2nd edition) Stephen Rosen |
---|---|
Other Sources | 2. Fundamental Principles of Polymeric Processing by Stanley Middleman, McGraw-Hill, 1977 |
3. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems by Mikell P. Groover, John Wiley and Sons Inc, (2007) | |
4. Principles of Polymer Processing, Zehev Tadmor, Costas G. Gogos, Wiley Interscience, 2007 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | 1 | 5 |
Application | 1 | 10 |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 1 | 5 |
Presentation | - | - |
Project | 1 | 10 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 25 |
Toplam | 8 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Ability to carry out advanced research activities, both individual and as a member of a team | |||||
2 | Ability to evaluate research topics and comment with scientific reasoning | |||||
3 | Ability to initiate and create new methodologies, implement them on novel research areas and topics | |||||
4 | Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions | |||||
5 | Ability to apply scientific philosophy on analysis, modelling and design of engineering systems | |||||
6 | Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level | |||||
7 | Contribute scientific and technological advancements on engineering domain of his/her interest area | |||||
8 | Contribute industrial and scientific advancements to improve the society through research activities |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | 1 | 2 | 2 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | 1 | 10 | 10 |
Report | |||
Homework Assignments | 1 | 5 | 5 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 127 |