Polymer Processing (ME421) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Polymer Processing ME421 3 0 0 3 5
Pre-requisite Course(s)
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. C. Merih ŞENGÖNÜL
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
  • Student will understand the macromolecular structure and different architectures of polymer molecules, their effect on crsytallinity and amorphous behavior as well as phase transitions.
  • Sudent will get familiar with many industrial polymers and engineering polymers, copolymers and their blends and learn the primary and secondary bonding between the chain molecules and their effect on their thermoplastic and thermosetting behavior as well as their mechanical properties as well as recycling
  • Student will get the basic idea of polymer synthesis and averaging of molecular weight distribution of polymers and its effect on their thermal and mechanical properties.
  • Student will have basic understanding of viscoeleasticiy and polymer rheology
  • Student will be able to understand various processing and molding operations and be able to analytically analyze extrusion process.
Course Content Introduction to hydrocarbons and macromolecular structures, homopolymers, copolymers, elastomers, blends and thermosets, morphology of polymers, semicrystalline and amorhous states, polymer additives, mechanical properties, differential scanning calorimetry and dilatometry, rheological properties, non Newtonian flow, viscoelasticity, melt flow index and rheometers, melting and mixing; die forming, extrusion based processes, molding processes, manufacture of tires and other rubber products.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to polymer morphology, architecture and behavior Chapter 1
2 Polymer synthesis and bonding in polymers Chapter 2
3 Characterization of molecular weights Chapter 3
4 Morphology of Polymers, crsytalization and amorphous structure Chapter 4
5 Thermodynamic transitions in Polymers Chapter 5
6 Mechanical Properties Chapter 6
7 Rubber elasticity Chapter 7
8 Pure viscous flow and newtonian behavior Chapter 8
9 Viscoelasticity and Non-newtonian flows Chapter 9
10 Polymer Rheology Chapter 11
11 Extrusion Chapter 11
12 Molding processes: Injection, blow molding, etc. Chapter 12
13 Other polymer shaping operations Chapter 13
14 Rubber production and vulcanization Chapter 14
15 Final exam period All Chapters
16 Final Exam Period All Chapters


Course Book 1. Fundamental Principles of Polymeric Materials (2nd edition) Stephen Rosen
Other Sources 2. Fundamental Principles of Polymeric Processing by Stanley Middleman, McGraw-Hill, 1977
3. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems by Mikell P. Groover, John Wiley and Sons Inc, (2007)
4. Principles of Polymer Processing, Zehev Tadmor, Costas G. Gogos, Wiley Interscience, 2007

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 5
Application 1 10
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 5
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 25
Toplam 8 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 1 2 2
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Homework Assignments 1 5 5
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 127