Tool and Die Design (ME413) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Tool and Die Design ME413 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Hakan KALKAN
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
  • The student will know tool materials and manufacturing methods of tools.
  • Ability to dimensioning and tolerancing techniques for the design of tools.
  • The student will be able to design jigs and fixtures.
  • The student will be able to design dies for sheet metal works.
  • The student will know the importance of Finite Element Analysis for the design of tools.
Course Content Introduction, definitions of jigs and fixtures, types of fixtures, design and manufacturing of jigs and fixtures, FE analysis of loading and stress analysis of jigs during processes.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Lecture Notes 1 on moodle website
2 Tooling Materials Lecture Notes 2 on moodle website
3 Dimensioning Lecture Notes 3 on moodle website
4 Sectioning Lecture Notes 4 on moodle website
5 Tolerancing Lecture Notes 5 on moodle website
6 Assembly Drawings Lecture Notes 6 on moodle website
7 Threads & Fasteners Lecture Notes 7 on moodle website
8 Tool Drawings Lecture Notes 8 on moodle website
9 Jigs & Fixtures Lecture Notes 9 on moodle website
10 Sheet Metal Bending Tools Lecture Notes 10 on moodle website
11 Sheet Metal Drawing Tools Lecture Notes 11 on moodle website
12 Sheet Metal Stretching Tools Lecture Notes 12 on moodle website
13 FE modelling of tools and dies Lecture Notes 13 on moodle website
14 Student Project Presentations Lecture Notes 14 on moodle website
15 Final Exam Lecture Notes on moodle website
16 Final Exam Lecture Notes on moodle website

Sources

Course Book 1. Fundamentals of Tool Design Author - John G. Nee, Society of Manufacturing Engineers.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury 1 30
Toplam 4 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to expand and get in-depth information with scientific researches in the field of mechanical engineering, evaluate information, review and implement.
2 Have comprehensive knowledge about current techniques and methods and their limitations in Mechanical engineering.
3 To complete and apply knowledge by using scientific methods using uncertain, limited or incomplete data; use information from different disciplines.
4 Being aware of the new and developing practices of Mechanical Engineering and being able to examine and learn when needed.
5 Ability to define and formulate problems related to Mechanical Engineering and develop methods for solving and apply innovative methods in solutions.
6 Ability to develop new and/or original ideas and methods; design complex systems or processes and develop innovative/alternative solutions in the designs.
7 Ability to design and apply theoretical, experimental and modeling based researches; analyze and solve complex problems encountered in this process.
8 Work effectively in disciplinary and multi-disciplinary teams, lead leadership in such teams and develop solution approaches in complex situations; work independently and take responsibility.
9 To establish oral and written communication by using a foreign language at least at the level of European Language Portfolio B2 General Level.
10 Ability to convey the process and results of their studies systematically and clearly in written and oral form in national and international environments.
11 To know the social, environmental, health, security, law dimensions, project management and business life applications of engineering applications and to be aware of the constraints of their engineering applications.
12 Ability to observe social, scientific and ethical values in the stages of data collection, interpretation and announcement and in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory 16 2 32
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 5 5
Total Workload 126