ECTS - Petrochemical Engineering

Petrochemical Engineering (CEAC470) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Petrochemical Engineering CEAC470 3 0 0 3 5
Pre-requisite Course(s)
CEAC103 AND CEAC104 OR CEAC105
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Bölüm Öğretim Üyeleri
Course Assistants
Course Objectives To familiarize students with petrochemical processes to describe existing and innovative emerging technologies for the production of synthesis gas, olefins, aromatics and their derivatives including industrial polyolefins and polyesters. To apply fundamental chemical engineering knowledge to industrial processes, such as steam reforming, steam cracking and catalytic reforming etc.
Course Learning Outcomes The students who succeeded in this course;
  • Explain the chemistry of petroleum and its characterization
  • Teach principles of fractional distillation: Atmospheric and vacuum distillations
  • Explain energy integration in a refinery: Pumparounds and side slips
  • Explain the need for basic noncatalytic and catalytic conversion processes: Principles of heterogeneous catalysis
  • Charges and products and yield estimation techniques of a refinery
  • Explain thermodynamics of steam cracking of ethane and naphtha: Hot and cold sections of olefin plants
  • Teach principles of catalytic reforming: Dual-site catalysis
  • Teach principles of aromatics production, conversion and separation proceses
  • Teach trends in downstream processing
  • Teach use of process simulators (such as ASPEN Hysis) in refining and petrochemical plants
Course Content Introduction to petroleum refining and petrochemical industries, steam cracking and olefins production, emerging technologies for olefin production, catalytic reforming and aromatics (BTX) production, C8 aromatics, aromatics from pyrolysis gasoline and other sources, steam reforming and related processes.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Petroleum Refining and Petrochemical Industries Lecture Notes
2 Steam Cracking and Olefins Production Lecture Notes
3 Steam Cracking and Olefins Production Lecture Notes
4 Catalytic Reforming and Aromatics (BTX) Production Lecture Notes
5 Catalytic Reforming and Aromatics (BTX) Production Lecture Notes
6 Midterm-I
7 C8 aromatics -Separation -Isomerisation -Hydrodealkylation and disproportination Aromatics from pyrolysis gasoline and other sources Aromatics production from lower alkanes (Z-forming) Lecture Notes
8 C8 aromatics -Separation -Isomerisation -Hydrodealkylation and disproportination Aromatics from pyrolysis gasoline and other sources Aromatics production from lower alkanes (Z-forming) Lecture Notes
9 Steam Reforming and related processes Lecture Notes
10 Steam Reforming and related processes Lecture Notes
11 Ethylene Derivatives Propylene Derivatives C4 olefins derivatives Lecture Notes
12 Ethylene Derivatives Propylene Derivatives C4 olefins derivatives Lecture Notes
13 Project Presentations-1
14 Benzene derivatives Toluene and Xylene derivatives Lecture Notes
15 Project Presentations-2
16 FINAL EXAMINATION

Sources

Other Sources 1. A. Chauvel and Gilles Lefebvre, Petrochemical Processes: Technical and Economic Characteristics, Vol.1: Synthesis Gas Derivatives and Major Hydrocarbons; Vol.2: Major Oxygenated, Chlorinated and Nitrated Derivatives, IFP Publications, Gulf Publishing C
2. Peter Wiseman, Petrochemicals, UMIST Series in Science and technology, John Wiley & Sons (1986).
3. The Chemistry of Methane, Ethylene,Propylene, C4 Olefins,Benzene, Toluene Xylenes, Workshop Notes, CHEM SYSTEMS (1999).
4. Bilsen Beşergil, Hampetrolden Petrokimyasallara: El Kitabı, Tükelmat A.Ş.,İzmir (2007).
5. James H. Gary, Glenn E.Handwerk & Mark J.Kaiser, Petroleum Refining: Technology and Economics, Fifth Edn., CRC Press (2007).
6. T. Alsahaf and M. Fahim, Fundamentals of Petroleum Refining, Elsevier (2010)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 20
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 8 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering to solve chemical engineering and applied chemistry problems. X
2 An ability to analyze and model a domain specific problem, identify and define the appropriate requirements for its solution. X
3 An ability to design, implement and evaluate a chemical engineering system or a system component to meet specified requirements. X
4 An ability to use the modern techniques and engineering tools necessary for chemical engineering practices. X
5 An ability to acquire, analyze and interpret data to understand chemical engineering and applied chemistry requirements. X
6 The ability to demonstrate the necessary organizational and business skills to work effectively in inter/inner disciplinary teams or individually. X
7 An ability to communicate effectively in Turkish and English. X
8 Recognition of the need for, and the ability to access information, to follow recent developments in science and technology and to engage in life-long learning. X
9 An understanding of professional, legal, ethical and social issues and responsibilities in chemical engineering and applied chemistry. X
10 Skills in project and risk management, awareness about importance of entrepreneurship, innovation and long-term development, and recognition of international standards and methodologies. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration 1 7 7
Project 1 10 10
Report
Homework Assignments 5 2 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 14 14
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 125