ECTS - Advanced Concrete Materials

Advanced Concrete Materials (CE443) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Concrete Materials CE443 3 0 0 3 6
Pre-requisite Course(s)
CE 210 Civil Engineering Materials
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Ertan SÖNMEZ
Course Assistants
Course Objectives The general objective of this course is to introduce the students advanced topics in concrete. These topics include cement, cementitious materials, aggregate, fresh concrete properties, admixtures, temperature effects, and properties of concrete in hardened state; microstructure, strength, durability characteristics, and testing of concrete
Course Learning Outcomes The students who succeeded in this course;
  • Identify the relationships between microstructural development and macroscale behavior of cement and concrete.
  • Review technical information in the field of concrete materials and apply this knowledge to improve sustainability of structures engineered from cementitious materials
  • Understand the behavioral characteristics and various properties of hardened concrete and apply this knowledge to property development and performance of hardened concrete
  • Design laboratory tests to perform analysis and evaluations on specific topics of concrete, select materials and design concrete mixtures to ensure good quality concrete for the specific purpose of use
  • Learn to prepare reports and presentations which involves literature survey of research topics about concrete and demonstrate improved technical communication skills, both written and oral
Course Content Cement, aggregates and admixtures for concrete, properties of concrete in fresh and hardened state, types and various aspects of concrete, durability characteristics of concrete, future of concrete studies and the interaction of concrete with the environment.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Cement, microstructure and properties
2 Aggregates and admixtures
3 Hydration of Portland cement
4 Fresh concrete
5 Microstructure of hardened concrete
6 Strength of hardened concrete
7 Dimensional stability of concrete
8 Effect of temperature on concrete
9 Further aspects of hardened concrete
10 Durability of concrete
11 Testing of concrete
12 Concretes with particular properties
13 Concrete and environment
14 Recent advances in concrete technology
15 Final Exam Period
16 Final Exam Period

Sources

Other Sources 1. Neville A. M., Properties of Concrete, Pearson, 1995
2. Mehta K.M., Monteiro P.J.M., Concrete microstructure, properties, and materials, Mcgraw Hill, Third Edition
3. Erdogan T., Beton, Genişletilmiş 2. baskı.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 1 30
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired.
2 Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application.
3 By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines.
4 Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed.
5 Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution.
6 Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design.
7 Has the ability to design and conduct theoretical, experimental, and model-based investigations; is able to use judgment to solve complex problems that may be faced in this process.
8 Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility.
9 Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio.
10 Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing.
11 Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices.
12 Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 1 5 5
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 4 56
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 26 26
Total Workload 150