Structural Systems (CE524) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Structural Systems CE524 3 0 0 3 5
Pre-requisite Course(s)
None
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Tolga AKIŞ
Course Assistants
Course Objectives To become familiar with the types of structural systems which are used to carry different type of loads. To introduce advantages and disadvantages of various structural systems. To learn the procedures for analyzing and design of structural systems.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to understand the fundamental principles of structural systems such as concrete structures, steel structures and timber structures
  • Students will be able to understand the lateral and vertical loads acting on the structural systems.
  • Students will be able to understand various structural system types and their modeling.
Course Content The classifications of structural systems, loads acting on structural system, structural requirements, reinforced concrete structures, steel structures, masonry structures, timber structures, composite structures.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction
2 Structural Systems
3 Loads Acting on Structural Systems
4 Structural Requirements
5 Reinforced Concrete Structures
6 Reinforced Concrete Structures
7 Steel Structures
8 Steel Structures
9 Masonry Structures
10 Masonry Structures
11 Timber Structures
12 Timber Structures
13 Composite Systems
14 Composite Systems
15 Final Exam Period
16 Final Exam Period

Sources

Other Sources 1. Moore F. (1999), Understanding Structures, McGrew-Hill.
2. Salmon, C.G. and Johnson, J.E. (2008), Steel Structures, Happer Collins.
3. Levy M. (1994) , Why Building Fall Down, Publisher Norton and Co.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 45
Toplam 3 100
Percentage of Semester Work 55
Percentage of Final Work 45
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired. X
2 Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application.
3 By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines.
4 Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed. X
5 Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution.
6 Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design. X
7 Has the ability to design and conduct theoretical, experimental, and model-based investigations; is able to use judgment to solve complex problems that may be faced in this process.
8 Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility.
9 Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio.
10 Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing. X
11 Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices.
12 Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 125