Earthquake Engineering (CE527) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Earthquake Engineering CE527 Elective Courses 3 0 0 3 5
Pre-requisite Course(s)
CE 321 – Structural Analysis
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Observation Case Study.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Ertan SÖNMEZ
Course Assistants
Course Objectives To provide an overview of earthquake engineering principles as applied to the analysis and design of structures. Applicable concepts from seismology will be introduced including significant features of seismic ground motion.
Course Learning Outcomes The students who succeeded in this course;
  • Students will have an understanding of the fundamental factors controlling the response of structures subjected to ground motion.
  • Students will be able to formulate the equation of motion of single (SDOF) and multi-degree-of-freedom (MDOF) systems
  • Students will be able to apply numerical integration schemes to calculate the response history of a linear SDOF system subjected to earthquake ground motion.
  • Students will be able to apply modal analysis to calculate the response history of the required response parameters
  • Students will be able to apply the response spectrum analysis to obtain the peak values of the required response parameters
  • Students will be able to write MATLAB programs to calculate the response of SDOF and MDOF systems subjected to excitations.
Course Content Seismic ground motion, introduction to earthquakes, causes of earthquake, seismic waves, factors affecting earthquake motion at a site, prediction of motion at a site, recording and processing of earthquake ground motion, single degree of freedom systems, formulation of the equation of motion, free vibration analysis.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 - Introduction to earthquakes - Causes of earthquake seismic waves, - Factors affecting earthquake motion at a site - Prediction of motion at a site - Recording and processing of earthquake ground motion Handout
2 SDOF Systems: - Formulation of the equation of motion 3-35
3 SDOF Systems: - Free Vibration Analysis (undamped and damped systems - Damping in structures 35-52
4 SDOF Systems: - Earthquake response of linear systems - Time-step integration methods for linear-elastic systems 187-197 155-187
5 SDOF Systems: - Time-step integration methods for linear-elastic systems - Response Spectra 155-187 197-232
6 Multi-degree of freedom systems (MDOFs) - Formulation of the equation of motion 311-353
7 Multi-degree of freedom systems (MDOFs) - Free vibration - Natural vibration frequencies and modes - Orthogonality of modes - Normalization of modes 365-383
8 Multi-degree of freedom systems (MDOFs) - Computation of vibration properties 392-409
9 Multi-degree of freedom systems (MDOFs) - Modal Analysis 434-444
10 Multi-degree of freedom systems (MDOFs) - Modal Analysis 444-467
11 Multi-degree of freedom systems (MDOFs) - Response History Analysis 468-514
12 SMulti-degree of freedom systems (MDOFs) - Response Spectra Analysis, modal superposition 514-549
13 Seismic design loads, design spectra; ground motion maps, seismic codes 703-728 Handout
14 Introduction to inelastic behavior 659-683
15 Final Exam Period
16 Final Exam Period

Sources

Course Book 1. Chopra, A.K., Dynamics of Structures - Theory and Applications to Earthquake Engineering, 3rd edition, 2007, Pearson Prentice Hall, Pearson Education Inc.
Other Sources 2. Clough, R.W. and Penzien J., Dynamics of Structures, 2nd edition, 1993, McGraw-Hill Inc.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 6 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Having accumulated knowledge on mathematics, science and engineering and an ability to apply these knowledge to solve Civil engineering problems. X
2 Ability to design Civil Engineering systems fulfilling sustainability in environment and manufacturability and economic constraints X
3 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems. X
4 An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment X
5 Ability to use modern engineering tools, techniques and facilities in design and other engineering applications X
6 Ability to carry out independent research in the field and to report the results of the research effectively and be able to present the research results at scientific meetings. X
7 Sufficient oral and written English knowledge to follow scientific conferences in the field and communicate with colleagues. X
8 Ability to effectively use knowledge in the field to work in disciplinary/multidisciplinary teams and the skill to lead these teams X
9 Consciousness on the necessity of improvement and sustainability as a result of life-long learning,ability for continuous renovation and monitoring the developments on science and technology and awareness on entrepreneurship and innovation X
10 Professional and ethical responsibility to gather and interpret data, apply and announce solutions to Civil Engineering problems. X
11 An ability to investigate, improve social connections and their conducting norms with a critical view and act to change them when necessary. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments 6 3 18
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125